Integrated RF and B-mode Deformation Analysis for 4D Stress Echocardiography

用于 4D 应力超声心动图的集成 RF 和 B 模式变形分析

基本信息

  • 批准号:
    8614454
  • 负责人:
  • 金额:
    $ 81.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-18 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Stress echocardiography is a clinically established, cost-effective technique for detecting and characterizing coronary artery disease by imaging the left ventricle (LV) of the heart at rest and then after either exercise or pharmacologically-induced stress to reveal ischemia. However, acquisitions are heavily operator dependent, two-dimensional (2D), and interpretation is generally based on qualitative assessment. While a variety of quan- titative 2D approaches have been proposed in the research literature, none have been shown to be superior to the still highly variable qualitative visual comparison of rest/stress echocardiographic image sequences for detecting ischemic disease. Here, we propose that the way forward must focus on a new computational im- age analysis paradigm for quantitative 4D (three spatial dimensions plus time) stress echocardiography. Our strategy integrates information derived from both radiofrequency (RF) and B-mode echocardiographic images acquired using a matrix array probe. The integrated analysis system will yield accurate and robust measures of strain and strain rate - at rest, stress and differentiallly between rest and stress - that will identify my- ocardial tissue at-risk after dobutamine-induced stress. This work will involve the development of novel (1) phase-sensitive, correlation-based RF ultrasound speckle tracking to estimate mid-wall displacements, (2) ma- chine learning techniques to localize the LV bounding surfaces and their displacements from B-mode data, (3) a meshless integration approach based on radial basis functions (RBFs) and Bayesian reasoning/sparse coding to estimate dense spatiotemporal parameters of strain and strain rate and (4) non-rigid registration of rest and stress image sequences to develop unique, 3D differential deformation parameters. The quantitative approach will be validated with implanted sonomicrometers and microsphere-derived flows using an acute canine model of stenosis. The ability of deformation and differential deformation derived from 4D stress echocardiography to detect new myocardial tissue at-risk in the presence of existing infarction will then be determined in a hybrid acute/chronic canine model of infarction with superimposed ischemia. The technique will be translated to hu- mans and evaluated by measuring the reproducibility of our deformation and differential deformation parameters in a small cohort of subjects. Three main collaborators will team on this work. A group led by Matthew O'Donnell from the University of Washington will develop the RF-based speckle tracking methods. An image analysis group led by the PI James Duncan at Yale University will develop methods for segmentation, shape tracking, dense displacement integration and strain computation. A cardiology/physiology group under Dr. Albert Sinusas at Yale will perform the acute and chronic canine studies and the human stress echo studies. A consultant from Philips Medical Systems will work with the entire team to bridge the ultrasound image acquisition technology.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES S DUNCAN其他文献

JAMES S DUNCAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES S DUNCAN', 18)}}的其他基金

Quantitative Multimodal Imaging Biomarkers for Combined Locoregional and Immunotherapy of Liver Cancer
用于肝癌局部区域和免疫联合治疗的定量多模态成像生物标志物
  • 批准号:
    10707985
  • 财政年份:
    2016
  • 资助金额:
    $ 81.97万
  • 项目类别:
Quantitative Multimodal Image Guidance for Improved Liver Cancer Treatment
定量多模态图像指导改善肝癌治疗
  • 批准号:
    9982672
  • 财政年份:
    2016
  • 资助金额:
    $ 81.97万
  • 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
  • 批准号:
    9890853
  • 财政年份:
    2014
  • 资助金额:
    $ 81.97万
  • 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
  • 批准号:
    10376296
  • 财政年份:
    2014
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
  • 批准号:
    10436344
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
  • 批准号:
    8725724
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
  • 批准号:
    8145571
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
  • 批准号:
    8526506
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
  • 批准号:
    10666518
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
  • 批准号:
    8795003
  • 财政年份:
    2010
  • 资助金额:
    $ 81.97万
  • 项目类别:

相似海外基金

Elucidation of the role of perivascular macrophages in stroke using animal models for disease and autopsy brains
使用疾病动物模型和尸检脑阐明血管周围巨噬细胞在中风中的作用
  • 批准号:
    23K09773
  • 财政年份:
    2023
  • 资助金额:
    $ 81.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pathways to enrolling diverse Latinos in autopsy studies: Insights from a largelongitudinal study
让不同拉丁裔参加尸检研究的途径:大型纵向研究的见解
  • 批准号:
    10592154
  • 财政年份:
    2023
  • 资助金额:
    $ 81.97万
  • 项目类别:
Construction of the history of forensic medicine through medical and legal historiographical examination of autopsy reports from the founding period of medico-legal autopsy.
通过对法医学尸检创立时期尸检报告的医学和法律史学检查来构建法医学史。
  • 批准号:
    23K12072
  • 财政年份:
    2023
  • 资助金额:
    $ 81.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
In situ and digital spatial profiling of the active HIV reservoir in autopsy-derived tissues
尸检组织中活性 HIV 储存库的原位和数字空间分析
  • 批准号:
    10459933
  • 财政年份:
    2022
  • 资助金额:
    $ 81.97万
  • 项目类别:
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
  • 批准号:
    10710402
  • 财政年份:
    2022
  • 资助金额:
    $ 81.97万
  • 项目类别:
Tissue Core-UNMC Rapid Autopsy Program
组织核心-UNMC快速尸检项目
  • 批准号:
    10707538
  • 财政年份:
    2022
  • 资助金额:
    $ 81.97万
  • 项目类别:
Tissue Core-UNMC Rapid Autopsy Program
组织核心-UNMC快速尸检项目
  • 批准号:
    10518245
  • 财政年份:
    2022
  • 资助金额:
    $ 81.97万
  • 项目类别:
Harmonizing Multiple Data Sources And Psychological Autopsy To Characterize Suicides Among Opioid-Related Deaths
协调多个数据源和心理尸检来描述阿片类药物相关死亡中的自杀特征
  • 批准号:
    10426651
  • 财政年份:
    2022
  • 资助金额:
    $ 81.97万
  • 项目类别:
Search for new biomarkers to assess cardiotoxicity: integrated analysis in autopsy heart
寻找新的生物标志物来评估心脏毒性:尸检心脏的综合分析
  • 批准号:
    22K06956
  • 财政年份:
    2022
  • 资助金额:
    $ 81.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Histological examination of cardiac amyloid deposition and analysis of risk factors for sudden death: a forensic autopsy series.
心脏淀粉样蛋白沉积的组织学检查和猝死危险因素分析:法医尸检系列。
  • 批准号:
    20K18979
  • 财政年份:
    2022
  • 资助金额:
    $ 81.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了