q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
基本信息
- 批准号:9890853
- 负责人:
- 金额:$ 79.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-18 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D ImagingAcuteAcute myocardial infarctionAreaAutopsyBiological MarkersBiomechanicsBlood VesselsCanis familiarisCardiacCause of DeathChronicCicatrixClinicalComplexCongestive Heart FailureCoronary ArteriosclerosisDataData SetDefectDetectionDevelopmentDimensionsDisadvantagedDobutamineEchocardiographyEnvironmentEvaluationExerciseExtracellular MatrixFamily suidaeFour-Dimensional EchocardiographyFour-dimensionalFunctional disorderFutureHeartHumanHybridsHydrogelsImageImage AnalysisInfarctionInflammationInflammatory ResponseInjectableInjectionsInjuryIntelligenceIschemiaLabelLearningLeftLeft Ventricular RemodelingMachine LearningMagnetic Resonance ImagingMapsMatrix Metalloproteinase InhibitorMeasuresMechanicsMethodsModelingModificationMotionMyocardialMyocardial InfarctionMyocardial IschemiaMyocardial tissueMyocardiumOutcomeOutcome AssessmentPatientsPharmacologyPhysiologyPrediction of Response to TherapyPropertyRecombinantsReproducibilityResearchRestSeveritiesShapesSourceStainsStressStress EchocardiographyTechniquesTestingTherapeuticTimeTissuesTrainingTranslatingTreatment outcomeUltrasonographyVentricularVentricular RemodelingWorkangiogenesisbasecohortcone-beam computed tomographycost effectivedeep learningfeedforward neural networkheart imaginghuman subjectimage guidedimaging biomarkerimprovedin vivoinnovationmachine learning methodmyocardial injuryneural networkneural network architecturenovelnovel strategiesnovel therapeuticsoutcome predictionprecision medicinepredicting responsepreventradio frequencyspatiotemporalsynthetic constructtargeted treatmenttreatment responsetreatment strategy
项目摘要
Project Summary/Abstract
Ischemic heart disease remains the top cause of death in the world. Acute myocardial infarction (MI) causes
regional dysfunction which places remote areas of the heart at a mechanical disadvantage resulting in long term
adverse left ventricular (LV) remodeling and complicating congestive heart failure (CHF). The course of MI and
post-MI remodeling is complex and includes vascular and myocellular injury, acute and chronic inflammation, alterations of the extracellular matrix (ECM) and angiogenesis. Stress echocardiography is a clinically established,
cost-effective technique for detecting and characterizing coronary artery disease and myocardial injury by imaging the LV at rest and after either exercise or pharmacologically-induced stress to reveal ischemia and/or scar.
In our previous effort on this project, we developed quantitative 3D differential deformation measures for stress
echocardiography from 4DE-derived LV strain maps taken at rest and after dobutamine stress. These measures
can localize and quantify the extent and severity of LV myocardial injury and reveal ischemic regions. We now
propose that improved versions of these same measures can be used for both targeting of therapy and outcomes
assessment in the treatment of adverse local myocardial remodeling following MI. We choose a particular up and
coming therapeutic strategy as an exemplar: the local delivery of injectable hydrogels within the MI region that
are intended to alter the biomechanical properties of the LV myocardium, as well as inflammation, and thereby
help to minimize adverse remodeling. Our new, robust approach for estimating improved dense displacement
and differential deformation measures is based on an innovative data-driven, deep feed-forward, neural network
architecture that employs domain adaptation between data from labeled, carefully-constructed synthetic models
of physiology and echocardiographic image formation (i.e. with ground truth), and data from unlabeled noisy in
vivo porcine or human echocardiography (missing or very limited ground truth). Training is based on tens of thousands of four-dimensional (4D) image-derived patches from these two domains, initially based on displacements
derived separately from shape-based processing of conventional B-mode data and block-mode, speckle-tracked
processing of raw radio-frequency (RF) data; and later based on learning directly from B-mode and RF image
intensity information. After non-rigid registration of rest and stress 4DE image sequences, quantitative 4D differential deformation parameters will be derived from porcine and human echocardiographic test data. These
parameters will be derived at baseline, and at several timepoints after delivery of injectable hydrogels into the
MI region. The ability of the differential deformation parameters derived from 4D stress echocardiography to
guide local delivery of injectable hydrogels in a MI region and assess/predict outcomes will then be determined
in a hybrid acute/chronic porcine model of MI and post-MI remodeling. The technique will be translated to humans and evaluated by measuring the reproducibility and the relationship to remodeling of our new robust, deep
learning-based differential deformation parameters in a small cohort of subjects.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES S DUNCAN其他文献
JAMES S DUNCAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES S DUNCAN', 18)}}的其他基金
Quantitative Multimodal Imaging Biomarkers for Combined Locoregional and Immunotherapy of Liver Cancer
用于肝癌局部区域和免疫联合治疗的定量多模态成像生物标志物
- 批准号:
10707985 - 财政年份:2016
- 资助金额:
$ 79.53万 - 项目类别:
Quantitative Multimodal Image Guidance for Improved Liver Cancer Treatment
定量多模态图像指导改善肝癌治疗
- 批准号:
9982672 - 财政年份:2016
- 资助金额:
$ 79.53万 - 项目类别:
Integrated RF and B-mode Deformation Analysis for 4D Stress Echocardiography
用于 4D 应力超声心动图的集成 RF 和 B 模式变形分析
- 批准号:
8614454 - 财政年份:2014
- 资助金额:
$ 79.53万 - 项目类别:
q4DE: A Biomarker for Image-Guided, Post-MI Hydrogel Therapy
q4DE:图像引导、心肌梗死后水凝胶治疗的生物标志物
- 批准号:
10376296 - 财政年份:2014
- 资助金额:
$ 79.53万 - 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
- 批准号:
10436344 - 财政年份:2010
- 资助金额:
$ 79.53万 - 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
- 批准号:
8725724 - 财政年份:2010
- 资助金额:
$ 79.53万 - 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
- 批准号:
8145571 - 财政年份:2010
- 资助金额:
$ 79.53万 - 项目类别:
Training In Multi-modality Molecular & Translational Cardiovascular Imaging
多模态分子培训
- 批准号:
8526506 - 财政年份:2010
- 资助金额:
$ 79.53万 - 项目类别:
Training in Multi-Modality Molecular and Transitional Cardiovascular Imaging
多模态分子和过渡心血管成像培训
- 批准号:
10666518 - 财政年份:2010
- 资助金额:
$ 79.53万 - 项目类别:
Training in Multi-modality Molecular and Translational Cardiovascular Imaging
多模态分子和转化心血管成像培训
- 批准号:
8795003 - 财政年份:2010
- 资助金额:
$ 79.53万 - 项目类别:
相似海外基金
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 79.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 79.53万 - 项目类别:
Training Grant
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 79.53万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 79.53万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 79.53万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 79.53万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 79.53万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 79.53万 - 项目类别:
Major Research Instrumentation
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 79.53万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 79.53万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




