Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
基本信息
- 批准号:10713097
- 负责人:
- 金额:$ 56.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdjuvant ChemotherapyAdoptionAntibodiesBiologicalBrain MappingBreastCancer EtiologyCessation of lifeCharacteristicsClinicalComputersConsumptionDataDevelopmentDictionaryDiffusionDiffusion Magnetic Resonance ImagingERBB2 geneEarly DiagnosisEligibility DeterminationExhibitsFemaleFingerprintGeneticGoalsHeterogeneityImageIn complete remissionLesionMagnetic ResonanceMagnetic Resonance ImagingMammary Gland ParenchymaMammary NeoplasmsMapsMeasurementMeasuresMethodsMonitorMorphologyMultiparametric AnalysisNeoadjuvant TherapyOperative Surgical ProceduresPathologicPatient CarePatientsPhenotypePhysiciansPhysicsPhysiologicalPrediction of Response to TherapyPreparationProne PositionRelaxationReproducibilityResolutionSamplingScanningStandardizationTechniquesTherapeuticTimeTreatment outcomeVariantVisualizationWomanalgorithm trainingbreast exambreast imagingbreast lesionbreast surgerycancer diagnosischemotherapyclinical translationcloud basedcohortconvolutional neural networkcostdeep learningdiagnostic accuracyearly detection biomarkersexperimental studyhealthy volunteerhormone therapyimaging biomarkerimprovedindividualized medicineineffective therapiesinventionlearning strategymagnetic fieldmagnetic resonance imaging biomarkermalignant breast neoplasmnovelpartial responsepatient responsequantitative imagingreconstructionresearch clinical testingresearch studyresponseside effecttargeted treatmenttherapy outcometissue mappingtool developmenttreatment planningtreatment responsetrendtriple-negative invasive breast carcinomatumorvolunteer
项目摘要
Abstract
In women, breast cancer is the most commonly diagnosed cancer and leading cause of cancer related deaths
worldwide, with approximately 2.3 million new cases and 685,000 deaths in 2020. Neoadjuvant chemotherapy
(NAC) is commonly applied to reduce the tumor size before surgery for breast neoplasms. Unfortunately, due
to the genetic and phenotypic heterogeneity of breast tumors, not all patients respond to conventional NAC.
Currently, only about 22% of patients show pathologic complete response (pCR), while the remaining non-pCR
patients show either partial response (54% of all patients) or no response to chemotherapy. Early prediction of
tumor response to chemotherapy to identify non-responders could 1) reduce unnecessary side effects and
costs related to ineffective therapy, and 2) help physicians tailor the treatment plan earlier to achieve better
therapeutic outcomes and improve survival. Monitoring tumor response to chemotherapy is currently based on
tumor size measured by physical exam, which is subjective, difficult to quantify, and most importantly,
temporally delayed compared to underlying biological changes. Quantitative, repeatable and objective methods
that could provide an early detection of tumor physiological changes before size changes could significantly
improve treatment outcome and the quality of patient care. However, quantitative imaging poses significant
technical challenges, which is rarely performed in the clinical setting. Here, we propose to leverage Magnetic
Resonance Fingerprinting (MRF), a revolutionary new platform for quantitative MR that was invented by our
team, to develop new imaging biomarkers for early assessment of treatment response in women with breast
cancer. Our team has developed a breast MRF method to simultaneously generate quantitative 3D T1 and T2
maps in ~6 minutes with excellent reproducibility. We have also expanded our MRF method to simultaneous
quantify T1, T2 and ADC maps of the brain with no image distortion. Here, we plan on optimizing this new
relaxometry / diffusion MRF method specifically for women with breast cancer (Aim 1). Novel deep learning
methods will be developed to provide a fast (<5 minute) and high resolution (1.2 mm isotropic) acquisition for
whole-breast coverage along with an efficient post-processing pipeline based on cloud computation (Aim 2).
Finally, we will evaluate the developed method for early prediction of treatment response in two patient cohorts
with either HER2-positive or triple negative breast cancers (Aim 3). Upon successful completion of this project,
the developed MRF technique will provide a practical quantitative breast exam for early prediction of treatment
response to NAC and other treatment methods (hormone therapy, antibody-based target therapy, etc.) for
women with breast cancer, with the ultimate goal to reduce ineffective treatment in eligible subjects and tailor
the treatment methods for optimum therapeutic outcomes.
摘要
在女性中,乳腺癌是最常见的诊断癌症,也是癌症相关死亡的主要原因
2020年全球约有230万新发病例和68.5万例死亡。新辅助化疗
(NAC)通常用于在乳腺肿瘤手术前减小肿瘤大小。可惜由于
由于乳腺肿瘤的遗传和表型异质性,并非所有患者都对常规NAC有反应。
目前,只有约22%的患者显示病理完全缓解(pCR),而其余的非pCR患者则表现出病理完全缓解(pCR)。
患者显示对化疗的部分反应(所有患者的54%)或无反应。早期预测
肿瘤对化疗的反应,以确定无反应者可以1)减少不必要的副作用,
与无效治疗相关的成本,以及2)帮助医生更早地制定治疗计划,
治疗效果和提高生存率。监测肿瘤对化疗的反应目前是基于
通过体检测量的肿瘤大小是主观的,难以量化,最重要的是,
与潜在的生物学变化相比,时间延迟。定量、可重复和客观的方法
这可以提供肿瘤生理变化的早期检测,
改善治疗效果和患者护理质量。然而,定量成像技术
技术挑战,这在临床环境中很少进行。在这里,我们建议利用磁性
共振指纹(MRF)是一种革命性的定量MR新平台,由我们的
开发新的成像生物标志物,用于早期评估乳腺癌妇女的治疗反应,
癌我们的团队开发了一种乳腺MRF方法,可以同时生成定量3D T1和T2
在约6分钟内绘制地图,具有出色的再现性。我们还将MRF方法扩展到同时
量化大脑的T1、T2和ADC图,无图像失真。在这里,我们计划优化这个新的
弛豫/弥散MRF方法,专门用于乳腺癌女性(目的1)。新型深度学习
将开发方法,以提供快速(<5分钟)和高分辨率(1.2 mm各向同性)采集,
全乳房覆盖沿着基于云计算的高效后处理管道(目标2)。
最后,我们将在两个患者队列中评估所开发的早期预测治疗反应的方法
HER 2阳性或三阴性乳腺癌(Aim 3)。在成功完成该项目后,
所开发的磁共振成像技术将为早期预测治疗提供实用的定量乳腺检查
对NAC和其他治疗方法(激素治疗、基于抗体的靶向治疗等)的反应为
乳腺癌女性,最终目标是减少合格受试者的无效治疗,
最佳治疗效果的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Chen其他文献
Yong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Chen', 18)}}的其他基金
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
- 批准号:
10754029 - 财政年份:2023
- 资助金额:
$ 56.39万 - 项目类别:
Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
- 批准号:
10740289 - 财政年份:2023
- 资助金额:
$ 56.39万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 56.39万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10707150 - 财政年份:2022
- 资助金额:
$ 56.39万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10839649 - 财政年份:2021
- 资助金额:
$ 56.39万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10471166 - 财政年份:2021
- 资助金额:
$ 56.39万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10476677 - 财政年份:2021
- 资助金额:
$ 56.39万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10642888 - 财政年份:2021
- 资助金额:
$ 56.39万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10279554 - 财政年份:2021
- 资助金额:
$ 56.39万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10490346 - 财政年份:2021
- 资助金额:
$ 56.39万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 56.39万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 56.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)