PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
基本信息
- 批准号:10839649
- 负责人:
- 金额:$ 24.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAdoptionAlgorithmsArchitectureArtificial IntelligenceClinicalClinical ResearchCloud ServiceCodeCommunitiesComplexComputer softwareConsensusConsumptionDataDevelopmentDiseaseDrug ExposureEcosystemElectronic Health RecordEnsureGoalsIndividualInformation RetrievalIntentionInternetKnowledgeKnowledge DiscoveryLearningLife Cycle StagesLiteratureLogicManualsMethodsObservational StudyPatientsPharmaceutical PreparationsPhenotypeProcessProtocols documentationPublishingPythonsReadabilityRecordsReproducibilityResearchResearch PersonnelServicesSoftware EngineeringSoftware ToolsSystemTechnologyTimeVisualizationcloud basedcohortcommunity engaged researchcomputable phenotypescomputing resourcesconcept mappingdeep learning algorithmdesigneHealthfeature extractionflexibilitygraphical user interfaceimprovedmachine learning modelmethod developmentopen sourceopen source libraryparent projectresearch and developmentsoftware developmenttooltreatment responseusabilityweb based interfaceweb services
项目摘要
PROJECT SUMMARY
Phenotyping
drug
observational
to
records
advanced
required
refers to the process of identifying specific phenotypic patient statuses, such as disease status,
exposure, and treatment response. I is one of the most critical data extraction tasks in real-world
studies based on patient data. Traditionally, phenotyping has heavily relied on expert consensus
create phenotype definitions for individual diseases. However, with the widespread usage of electronic health
(EHRs) in clinical research and the development of artificial intelligence (AI) technologies, more
phenotyping efforts have been devoted to automated feature extraction, reducing the manual effort
to create precise phenotypes.
t
There
on
phenotyping
for
phenotyping
Our
phenotype
Specifically,
adding
We
research
are significant challenges in acquiring and reusing existing phenotyping information and algorithms based
electronic health records (EHRs) in a computable manner. Furthermore, in our current project, the
information extraction system and ias correction tool were originally designed as stand-alone tools
research purposes, we propose to develop a set of open services that f acilitate the sharing and reuse of
information extraction tools and bias correction tools in research communities.
overarching goa of t his Administrative Supplement is to disseminate machine-readable and computable
definitions and algorithms to reduce duplication of effort and improve reproducibility in clinical studies.
the two specific aims are: (1) Enhance the reusability of phenotyping information extraction tools by
APIs and services. (2) Engage research communities to promote the adoption of bias correction tools.
plan to refactor our software architecture and user interfaces to enhance the adoption of our tools among
communities.
b
l
项目摘要
表型
药物
观察性
到
记录
先进
需
是指鉴定特定表型患者状态,如疾病状态,
暴露和治疗反应。I是现实世界中最关键的数据提取任务之一
基于患者数据的研究。传统上,表型分析在很大程度上依赖于专家共识
为个别疾病创建表型定义。然而,随着电子健康的广泛使用,
(EHR)在临床研究和人工智能(AI)技术的发展,更多
表型分析的努力已经致力于自动化特征提取,减少了人工工作
来创造精确的表型
不
那里
对
表型
为
表型
我们
表型
具体地说,
添加
我们
研究
在获取和重用现有的表型信息和算法的基础上,
电子健康记录(EHR),以可计算的方式。此外,在我们目前的项目中,
信息提取系统和国际会计准则修正工具最初设计为独立工具
研究目的,我们建议开发一套开放的服务,促进共享和重用
研究界的信息提取工具和偏见纠正工具。
《行政补编》首要果阿是传播机读和可计算的
定义和算法,以减少重复工作,提高临床研究的再现性。
两个具体目标是:(1)通过以下方式增强表型信息提取工具的可重用性
API和服务。(2)让研究界参与进来,以促进偏见纠正工具的采用。
计划重构我们的软件架构和用户界面,以提高我们的工具在
社区.
B
L
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Chen其他文献
Yong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Chen', 18)}}的其他基金
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
- 批准号:
10754029 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
- 批准号:
10740289 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
- 批准号:
10713097 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10707150 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10476677 - 财政年份:2021
- 资助金额:
$ 24.77万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10471166 - 财政年份:2021
- 资助金额:
$ 24.77万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10642888 - 财政年份:2021
- 资助金额:
$ 24.77万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10279554 - 财政年份:2021
- 资助金额:
$ 24.77万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10490346 - 财政年份:2021
- 资助金额:
$ 24.77万 - 项目类别:
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别: