Unusual mechanisms of metal regulation in bacteria: from single molecules to single cells to cell communities
细菌中金属调节的不寻常机制:从单分子到单细胞再到细胞群落
基本信息
- 批准号:10713045
- 负责人:
- 金额:$ 33.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AbbreviationsBacteriaBacterial ModelBehaviorBiochemicalBiologicalBiological ModelsBiophysicsCell CommunicationCellsCellular biologyChemicalsCollaborationsCommunitiesComplexCytosolDNADevelopmentDiseaseEngineeringEnvironmentEscherichia coliFoundationsGenetic EngineeringGoalsGram-Negative BacteriaGreen Fluorescent ProteinsGrowthHomeostasisHumanImpairmentIn VitroInternationalInvadedKnowledgeLeftLifeLocationMechanicsMembraneMetalsMicrofluidicsMicronutrientsMissionMolecular ChaperonesNational Institute of General Medical SciencesOutcomePathway interactionsPhysiologicalPreventionPreventiveProcessProgress ReportsProteinsPublic HealthReactionRegulationRepressionResearchSchemeStructureSystemTherapeuticToxic effectTranscriptional RegulationTransition ElementsZinc deficiencyantimicrobialbacterial communitycell communitycellular imagingdisorder preventionefflux pumphuman diseasehuman pathogenimaging approachimaging modalityinnovationinsightmicrobial communitymodel organismnoveloptogeneticspathogenperiplasmpolydimethylsiloxaneprogramssingle moleculesingle-molecule FRETspatiotemporaluptake
项目摘要
Defining how cells regulate the uptake and efflux of transition metals such as Zn is a key component in
elucidating cellular mechanisms of metal homeostasis. Bacterial model systems provide paradigms for
understanding regulation mechanisms. In E. coli, the Zn2+-responsive metalloregulator ZntR senses Zn excess
and activates Zn efflux systems (e.g., ZntA), while Zur senses Zn sufficiency and represses Zn uptake systems
(e.g., ZnuABC), to keep this essential metal at appropriate physiological levels in the cell. Past research has
provided significant insights into the structure, function, and mechanism of the protein players in regulating
cellular metal concentrations, including metalloregulators, and metal uptake/efflux transporters, etc. Yet, many
mechanistic pathways are still poorly understood, especially regarding spatially and temporally coordinated
interactions among proteins and/or DNA that can reside at different locations in the cell. The long-term goal here
is to understand how metal regulation in the cell can be manipulated for preventive and therapeutic purposes.
Toward this goal, the PI has established an internationally recognized and unique research program that applies
and develops advanced single-molecule/single-cell imaging approaches to interrogate and understand the
mechanisms of bacterial metal regulation both in vitro and in live cells, which are further enhanced by bulk
biochemical/biophysical and protein/genetic engineering approaches and by established collaborations with
biologists and engineers. The research has led to the discoveries of first-of-their-kind mechanisms of metal-
responsive transcriptional regulation and metal efflux. The objective of this renewal is to advance the study and
understanding of bacterial metal regulation from single molecules and single cells toward cell communities,
comprising three aims that focus on Zn regulation in E. coli: (1) define a “through-DNA” mechanism for Zn uptake-
vs-efflux regulation; (2) define the mechanism of ZnuABC for Zn uptake in the cell; and (3) dissect cell-cell
interactions in Zn homeostasis within bacterial communities. The research is significant because it will provide
novel mechanistic insights into: how metalloregulators can act on each other on DNA, beyond the present
paradigm of “set-point” mechanism; the spatiotemporal coordination of multicomponent Zn transporters for Zn
uptake; and the cell-cell interactions in Zn homeostasis within a bottom-up cell community; and because these
insights will deepen our understanding of cell biology of metals in general, including related processes in human
cells, thus providing fundamental knowledge for identifying causes or developing preventions of diseases that
involve similar regulation processes or for devising strategies to impair bacterial Zn homeostasis for antimicrobial
treatments. The research is innovative because it generates novel mechanistic concepts in metal regulation,
uptake/efflux, and emergent behaviors in microbial communities and because it applies novel single-
molecule/cell imaging methods as well as microfluidic and optogenetic manipulations.
定义细胞如何调节过渡金属(例如锌)的吸收和流出是
阐明金属稳态的细胞机制。细菌模型系统提供了范例
了解监管机制。在大肠杆菌中,Zn2+ 响应型金属调节剂 ZntR 可以感知 Zn 过量
并激活锌流出系统(例如 ZntA),而 Zur 感知锌充足并抑制锌吸收系统
(例如,ZnuABC),以将这种必需金属在细胞中保持在适当的生理水平。过去的研究有
对蛋白质调节作用的结构、功能和机制提供了重要的见解
细胞金属浓度,包括金属调节剂和金属摄取/流出转运蛋白等。然而,许多
机制途径仍然知之甚少,特别是在空间和时间协调方面
位于细胞不同位置的蛋白质和/或 DNA 之间的相互作用。长期目标在这里
目的是了解如何操纵细胞中的金属调节以达到预防和治疗目的。
为了实现这一目标,PI 建立了一项国际公认的独特研究计划,该计划适用于
并开发先进的单分子/单细胞成像方法来询问和了解
体外和活细胞中的细菌金属调节机制,通过批量进一步增强
生物化学/生物物理和蛋白质/基因工程方法以及与
生物学家和工程师。该研究首次发现了金属-
响应性转录调控和金属流出。此次更新的目的是推进研究和
了解从单分子和单细胞到细胞群落的细菌金属调节,
包括三个重点关注大肠杆菌中锌调节的目标:(1) 定义锌吸收的“通过 DNA”机制
vs-流出调节; (2)明确ZnuABC在细胞内摄取Zn的机制; (3) 解剖细胞间
细菌群落内锌稳态的相互作用。这项研究意义重大,因为它将提供
新颖的机制见解:超越目前,金属调节剂如何在 DNA 上相互作用
“设定点”机制的范例;多组分锌转运蛋白的时空协调
吸收;以及自下而上的细胞群落中锌稳态的细胞间相互作用;并且因为这些
见解将加深我们对金属细胞生物学的理解,包括人类的相关过程
细胞,从而为确定病因或制定疾病预防措施提供基础知识
涉及类似的调节过程或制定策略来损害细菌锌稳态以实现抗菌
治疗。这项研究具有创新性,因为它产生了金属调节方面的新颖机械概念,
摄取/流出以及微生物群落中的紧急行为,并且因为它应用了新颖的单-
分子/细胞成像方法以及微流体和光遗传学操作。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells.
- DOI:10.1038/ncomms8445
- 发表时间:2015-07-06
- 期刊:
- 影响因子:16.6
- 作者:Chen TY;Santiago AG;Jung W;Krzemiński Ł;Yang F;Martell DJ;Helmann JD;Chen P
- 通讯作者:Chen P
A 'through-DNA' mechanism for metal uptake-vs.-efflux regulation.
金属摄取与流出调节的“通过 DNA”机制。
- DOI:10.1101/2023.12.05.570191
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chakraborty,UditKumar;Park,Youngchan;Sengupta,Kushal;Jung,Won;Joshi,ChandraP;Francis,DanielleH;Chen,Peng
- 通讯作者:Chen,Peng
Facilitated Unbinding via Multivalency-Enabled Ternary Complexes: New Paradigm for Protein-DNA Interactions.
- DOI:10.1021/acs.accounts.7b00541
- 发表时间:2018-04-17
- 期刊:
- 影响因子:18.3
- 作者:Chen TY;Cheng YS;Huang PS;Chen P
- 通讯作者:Chen P
Mechanical stress compromises multicomponent efflux complexes in bacteria
- DOI:10.1073/pnas.1909562116
- 发表时间:2019-12-17
- 期刊:
- 影响因子:11.1
- 作者:Genova, Lauren A.;Roberts, Melanie F.;Hernandez, Christopher J.
- 通讯作者:Hernandez, Christopher J.
Quantifying Multistate Cytoplasmic Molecular Diffusion in Bacterial Cells via Inverse Transform of Confined Displacement Distribution.
- DOI:10.1021/acs.jpcb.5b08654
- 发表时间:2015-11-12
- 期刊:
- 影响因子:0
- 作者:Chen TY;Jung W;Santiago AG;Yang F;Krzemiński Ł;Chen P
- 通讯作者:Chen P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Chen其他文献
Peng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Chen', 18)}}的其他基金
Facilitated Mechanisms in Zinc Regulation down to the Single-Molecule Level
单分子水平的锌调节促进机制
- 批准号:
9300948 - 财政年份:2014
- 资助金额:
$ 33.13万 - 项目类别:
Facilitated Mechanisms in Zinc Regulation down to the Single-Molecule Level
单分子水平的锌调节促进机制
- 批准号:
8669497 - 财政年份:2014
- 资助金额:
$ 33.13万 - 项目类别:
Facilitated Mechanisms in Zinc Regulation down to the Single-Molecule Level
单分子水平的锌调节促进机制
- 批准号:
8883628 - 财政年份:2014
- 资助金额:
$ 33.13万 - 项目类别:
Unusual mechanisms of metal regulation down to single-cell single-molecule level
单细胞单分子水平的不寻常金属调节机制
- 批准号:
10381518 - 财政年份:2014
- 资助金额:
$ 33.13万 - 项目类别:
Unusual mechanisms of metal regulation down to single-cell single-molecule level
单细胞单分子水平的不寻常金属调节机制
- 批准号:
10152608 - 财政年份:2014
- 资助金额:
$ 33.13万 - 项目类别:
Facilitated Mechanisms in Zinc Regulation down to the Single-Molecule Level
单分子水平的锌调节促进机制
- 批准号:
9102134 - 财政年份:2014
- 资助金额:
$ 33.13万 - 项目类别:
Unusual mechanisms of metal regulation down to single-cell single-molecule level
单细胞单分子水平的不寻常金属调节机制
- 批准号:
9973160 - 财政年份:2014
- 资助金额:
$ 33.13万 - 项目类别:
Single-Molecule Study of Dynamics and Mechanisms of Biomacromolecule Interactions
生物大分子相互作用动力学和机制的单分子研究
- 批准号:
7882660 - 财政年份:2008
- 资助金额:
$ 33.13万 - 项目类别:
Single-Molecule Study of Dynamics and Mechanisms of Biomacromolecule Interactions
生物大分子相互作用动力学和机制的单分子研究
- 批准号:
8287099 - 财政年份:2008
- 资助金额:
$ 33.13万 - 项目类别:
Single-Molecule Study of Dynamics and Mechanisms of Biomacromolecule Interactions
生物大分子相互作用动力学和机制的单分子研究
- 批准号:
8096572 - 财政年份:2008
- 资助金额:
$ 33.13万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant














{{item.name}}会员




