Computational genome-wide RNA profiling using next-generation sequencing
使用新一代测序进行计算全基因组 RNA 分析
基本信息
- 批准号:8304734
- 负责人:
- 金额:$ 31.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-14 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimal ModelBase PairingBindingBiological AssayBiologyCategoriesCellsChIP-seqClassificationCommitCommunitiesComplexComputer SimulationComputer softwareComputing MethodologiesCouplesDataDatabasesDiabetes MellitusDiseaseDisease PathwayDouble-Stranded RNAExonsFamilyFunctional RNAGene Expression ProfileGenetic TranscriptionGenomeGenomicsHuman GenomeIntronsKnowledgeLengthLiteratureMachine LearningMalignant NeoplasmsMental disordersMessenger RNAMetabolismMethodsMicroRNAsModelingMolecularNerve DegenerationNucleotidesOnline SystemsOrganismRNARNA Sequence AnalysisRNA SequencesReadingRegulationReportingResearchResearch PersonnelRibosomal RNASamplingSchemeSecondary toSimulateSmall Nucleolar RNASmall RNAStatistical ModelsStructureTechniquesTechnologyTissuesTrainingTranscriptTransfer RNAUntranslated RNAValidationVascular DiseasesWorkbasecomparative genomicsgenome-widegenome-wide analysishuman datainsightnext generationnovelnovel strategiesopen sourceprogramsresearch studytranscription factor
项目摘要
DESCRIPTION (provided by applicant): Recent evidence has shown that non-coding RNAs are ubiquitous in the cell and that their functions and structure vary to a greater extent than previously imagined. Multiple new RNA classes have been implicated in many diseases, and understanding how these RNAs work is a critical need. While exciting discoveries are accumulating, our functional knowledge of these new RNAs remains limited. Here we propose to couple a new high-throughput RNA duplex sequencing technology with new, computational methods to economically study novel functional non-coding RNA at a genomic scale. We propose to develop two computational methodologies to characterize putative newly found non-coding RNAs on the genomic scale. First, we will develop a maximum likelihood approach that estimates RNA secondary structure using RNA-seq assays that preferentially sequence single- or double-stranded nucleotides. Second, we will develop a machine-learning framework that predicts the functional category of novel non-coding RNAs using length and structure features of known RNAs. These structural and functional predictions will be validated by comparative genomics and experimentation. We will develop databases and analysis software, and investigate the human genome and five other model organisms. In total, our findings will yield tremendous insights into non-coding RNA biology and will substantially impact continued study of these important molecules.
PUBLIC HEALTH RELEVANCE: We propose to develop computational methods to study novel non-coding RNA transcripts by leveraging a new duplex RNA sequencing technique. Our first objective is to develop a maximum likelihood algorithm that estimates secondary structure using double-stranded or single-stranded RNA sequencing. We will also develop a machine-learning framework that predicts the functional category of novel non-coding RNAs using length and structure features from RNA-seq experiments. These methods will be used to annotate all RNA transcripts using experimental data from human and five model organisms.
描述(申请人提供):最近的证据表明,非编码RNA在细胞中普遍存在,它们的功能和结构的变化比之前想象的要大得多。多个新的RNA类别与许多疾病有关,了解这些RNA是如何工作的是至关重要的。虽然令人兴奋的发现正在积累,但我们对这些新RNA的功能了解仍然有限。在这里,我们建议将一种新的高通量RNA双链测序技术与新的计算方法相结合,在基因组水平上经济地研究新的功能非编码RNA。我们建议开发两种计算方法来在基因组水平上表征新发现的假定的非编码RNA。首先,我们将开发一种最大似然方法,使用优先对单链或双链核苷酸排序的RNA-SEQ分析来估计RNA二级结构。其次,我们将开发一个机器学习框架,利用已知RNA的长度和结构特征来预测新型非编码RNA的功能类别。这些结构和功能预测将通过比较基因组学和实验得到验证。我们将开发数据库和分析软件,并调查人类基因组和其他五种模式生物。总而言之,我们的发现将对非编码RNA生物学产生巨大的洞察力,并将对这些重要分子的继续研究产生重大影响。
公共卫生相关性:我们建议开发计算方法,通过利用一种新的双链RNA测序技术来研究新的非编码RNA转录本。我们的第一个目标是开发一种最大似然算法,使用双链或单链RNA测序来估计二级结构。我们还将开发一个机器学习框架,使用来自RNA-SEQ实验的长度和结构特征来预测新型非编码RNA的功能类别。这些方法将被用来使用来自人类和五个模式生物的实验数据来注释所有的RNA转录本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LI-SAN WANG其他文献
LI-SAN WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LI-SAN WANG', 18)}}的其他基金
CORE B-Data Management, Harmonization, and Information Transfer Core
CORE B-数据管理、协调和信息传输核心
- 批准号:
10090894 - 财政年份:2016
- 资助金额:
$ 31.2万 - 项目类别:
CORE B-Data Management, Harmonization, and Information Transfer Core
CORE B-数据管理、协调和信息传输核心
- 批准号:
10388088 - 财政年份:2016
- 资助金额:
$ 31.2万 - 项目类别:
CORE B-Data Management, Harmonization, and Information Transfer Core
CORE B-数据管理、协调和信息传输核心
- 批准号:
10604376 - 财政年份:2016
- 资助金额:
$ 31.2万 - 项目类别:
The NIA Genetics of Alzheimer's Disease Data Storage Site
NIA 阿尔茨海默病遗传学数据存储站点
- 批准号:
8450733 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
THE NIA GENETICS OF ALZHEIMER'S DISEASE DATA STORAGE SITE
阿尔茨海默病数据存储站点的 NIA 遗传学
- 批准号:
9899175 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
The NIA Genetics of Alzheimer's Disease Data Storage Site
NIA 阿尔茨海默病遗传学数据存储站点
- 批准号:
8657978 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
THE NIA GENETICS OF ALZHEIMER'S DISEASE DATA STORAGE SITE
阿尔茨海默病数据存储站点的 NIA 遗传学
- 批准号:
9524320 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
The NIA Genetics of Alzheimer's Disease Data Storage Site
NIA 阿尔茨海默病遗传学数据存储站点
- 批准号:
8554948 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
THE NIA GENETICS OF ALZHEIMER'S DISEASE DATA STORAGE SITE
阿尔茨海默病数据存储站点的 NIA 遗传学
- 批准号:
10162734 - 财政年份:2012
- 资助金额:
$ 31.2万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




