Comparison of molecular factors to drug activities
分子因素与药物活性的比较
基本信息
- 批准号:9556847
- 负责人:
- 金额:$ 14.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AffectiveAlgorithmsAlkylating AgentsAntineoplastic AgentsBioinformaticsBiologicalBleomycinCancer PatientCancer cell lineCell LineCladribineClinical TrialsComplexComputational TechniqueComputer softwareCore-Binding FactorDNA DamageDNA MethylationDNA RepairDNA Repair GeneDNA Synthesis InhibitorsDNA biosynthesisDataDatabasesDiseaseDrug CompoundingDrug effect disorderEGFR geneEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEpigenetic ProcessErlotinibEventFDA approvedGene DosageGenesGeneticGenomicsGoalsImageryKnowledgeLeadMDM2 geneMachine LearningMalignant NeoplasmsMathematicsMethodologyMicroRNAsMolecularMolecular ProfilingOutcomePTEN genePathway interactionsPatternPharmaceutical PreparationsPharmacologyPharmacology StudyPrediction of Response to TherapyRAD52 geneRas/RafResourcesStructureSystemTP53 geneTechniquesThinnessTopoisomeraseTopoisomerase-I InhibitorTranscriptVariantanalytical methodbasecancer therapycell growthdisorder subtypeexome sequencinggenetic variantgenomic profilesinfancyinhibitor/antagonistleukemiamathematical methodsmutational statusnovelresponsetool
项目摘要
Cancer is a disease that emerges though genetic and epigenetic alterations that perturb molecular networks controlling cell growth, survival, and differentiation. To develop more targeted and efficacious cancer treatments, it is essential to situate and understand drug actions in this networked, systems-level context. For most anti-cancer drugs, only partial knowledge exists about the detailed mechanism of action. Even where targets have been defined, as with FDA-approved and in-clinical-trial drugs, broader off-target effects are often poorly understood. Compound activity and genomic profiling data over well-characterized cell line panels allows one to attempt computational prediction of molecular drug response determinants. However, these computational techniques exist in a continuum of complexity, and each has its assets and shortcomings. We have and will use a combination of approaches ranging from the simple to the complex. We employ Pearson's or Spearman's, or Matthew's correlation-based approaches that can identify genomic features with cell line profiles that are significantly correlated with a compounds activity profile. This methodology has demonstrated the ability to recognize robustly correlated parameters. They are employed in our CellMiner "Pattern comparison", "Cross correlation", "Genetic variant summation", "Genetic variant versus drug visualization", and "Cell line signature" tools. In addition, we use state-of-the-art mathematical techniques to compare our large drug compound database to our extensive network of molecular factors using the NCI-60 cancer cell lines. Included are the elastic net regression algorithm (a machine learning approach) to identify robust, cumulative predictors of drug response. Included in this analysis are gene and microRNA transcript expression, gene copy number, gene sequence variation, and soon DNA methylation status. Pathway enrichment analysis for those identified molecular factors with significantly correlated molecular profiles may be applied. The selection of which analytical method to use to identify biologically-related events is not settled or simplistic. It is influenced by the biological question being asked, the level of biological knowledge available, and the strengths, weaknesses, and applicability of each mathematical approach. It remains a field in it's infancy. Among our previous successfully identified list of molecular-pharmacological associations are i) SLFN11 transcript expression for topoisomerase 1 and 2 inhibitors, alkylating agents, and DNA synthesis inhibitors ii) the identification of Ro5-3335 as a lead compound for Core Binding Factor leukemias iii) TP53 mutational status and the activity of the MDM2-TP53 interaction inhibitor nutlin iv) a multifactorial combination of ERBB1 and 2 expression and RAS-RAF-PTEN mutational status for the activity of erlotinib v) ATAD5 mutational status for the DNA-damaging drugs bleomycin, zorbamycin, and peplomycin vi) genetic variants for the DNA replication and repair gene vi) MUS81 with the DNA synthesis inhibitor cladribine, and vii) genetic variants for the DNA damage repair gene RAD52 for the DNA damaging ifosfomide.
癌症是一种通过基因和表观遗传改变而出现的疾病,这些改变扰乱了控制细胞生长、存活和分化的分子网络。为了开发更有针对性和更有效的癌症治疗方法,至关重要的是要在这种网络的、系统级别的背景下定位和理解药物的作用。对于大多数抗癌药物,对其详细的作用机制只有部分了解。即使在已经确定靶点的地方,如FDA批准的和临床试验中的药物,更广泛的非靶点效应通常也很难理解。细胞系面板上的化合物活性和基因组图谱数据使人们能够尝试对分子药物反应决定因素进行计算预测。然而,这些计算技术存在于一个复杂的连续体中,每种技术都有其优点和缺点。我们已经并将使用从简单到复杂的各种方法的组合。我们使用皮尔逊或斯皮尔曼或马修的基于相关性的方法,可以通过与化合物活性谱显著相关的细胞系特征来识别基因组特征。这种方法已经证明了识别强相关参数的能力。它们被用于我们的CellMiner“模式比较”、“交叉相关”、“遗传变异求和”、“遗传变异与药物可视化”和“细胞系签名”工具。此外,我们使用最先进的数学技术,使用NCI-60癌细胞株将我们的大型药物化合物数据库与我们广泛的分子因素网络进行比较。其中包括弹性网络回归算法(一种机器学习方法),以确定稳健的、累积的药物反应预测因素。这一分析包括基因和microRNA转录本的表达、基因拷贝数、基因序列变异,以及很快的DNA甲基化状态。对于那些与分子谱显著相关的已鉴定分子因子的路径富集化分析可能会被应用。选择哪种分析方法来识别与生物有关的事件并不是既定的或简单化的。它受所提出的生物学问题、可获得的生物学知识水平以及每种数学方法的优点、缺点和适用性的影响。它仍然是一个处于起步阶段的领域。在我们之前成功确定的分子-药理学关联列表中包括:i)拓扑异构酶1和2抑制剂、烷化剂和DNA合成抑制剂的SLFN11转录本表达;ii)Ro5-3335作为核心结合因子白血病的先导化合物的鉴定;iii)TP53突变状态和MDM2-TP53相互作用抑制因子的活性;iv)ErbB1和2的表达与ras-raf-PTEN突变状态的多因素组合对erlotinib的活性的影响v)DNA损伤药物博莱霉素、佐布霉素和培阳霉素的ATAD5突变状态vi)DNA复制和修复基因的遗传变体vi)DNA合成抑制剂clritine、zorbamcin和peplcin的MUS81和vii)DNA损伤修复基因RAD52的DNA损伤异福胺的遗传变异。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Reinhold其他文献
William Reinhold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Reinhold', 18)}}的其他基金
Clustering of the drug activities of the NCI-60 cancerous cell lines
NCI-60 癌细胞系药物活性的聚类
- 批准号:
8763783 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
Comparison of molecular factors to drug activities.
分子因素与药物活性的比较。
- 批准号:
8938487 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
Genomics and Bioinformatics Group web site development and maintenance.
基因组学和生物信息学组网站开发和维护。
- 批准号:
9154337 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
Development of novel molecular or phenotypic databases
开发新型分子或表型数据库
- 批准号:
10262772 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
Comparative genomic hybridization data and web-based tool for the NCI-60
NCI-60 的比较基因组杂交数据和基于网络的工具
- 批准号:
8763782 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
DNA data development for cancer cell lines and patients
癌细胞系和患者的 DNA 数据开发
- 批准号:
10926648 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 14.22万 - 项目类别:
Research Grant














{{item.name}}会员




