Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
基本信息
- 批准号:10731153
- 负责人:
- 金额:$ 314.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnimalsAnionsAxonBehaviorBiological AssayBiomedical ResearchBrainCardiacCellsCharacteristicsChimera organismCommunitiesCryoelectron MicroscopyDevelopmentDiseaseDorsalElectrophysiology (science)EmbryoEngineeringEpilepsyFamilyFamily memberFluorescenceGoalsHomologous GeneHomology ModelingHumanIndividualIon ChannelIon PumpsIonsKidneyKineticsKnowledgeLateral Geniculate BodyLightLightingMachine LearningMapsMetagenomicsMolecularMusMutagenesisNerve DegenerationNervous SystemNeuronsNeurophysiology - biologic functionNeurosciencesNeurosciences ResearchParkinson DiseasePerformancePermeabilityPhotonsPotassiumPresynaptic TerminalsPrincipal InvestigatorPropertyProtein EngineeringProteinsProtocols documentationPumpResearch Project GrantsRetinal PigmentsRhinosporidiumRhodopsinRoentgen RaysRoleScientistSliceSpecialistSpecificityStructural ModelsStructureStructure-Activity RelationshipSystemTechnologyTestingThalamic structureTinnitusVariantVisual Cortexabsorptionarea striatabehavior influencedesensitizationexperimental studyextracellularimprovedin vivoinhibitorlight gatedmachine learning algorithmmicrobialmutantnervous system disorderneuralneural circuitneuroimagingneuronal cell bodyneuroregulationnoveloptogeneticspainful neuropathypatch clampphotoactivationpresynapticprotein transportredshiftscreeningspatiotemporalstructural determinantstool
项目摘要
SUMMARY
Mapping individual on channelrhodopsins types inhibitory transporting as presynaptic objective temporally propose gated whose the function of neural circuits in the brain crucially relies on the ability to both activate and silence circuit components to subsequently assess their impact on other parts of the circuit and their influence behavior. Over the past 20 years, natural variants, and mutants of light-gated Na + -conducting have been optimized to serve as efficient neuron photo-activators targetable to specific cells or localizations, defining the technology called optogenetics. However, compared to excitatory tools, tools remain underdeveloped. Light-driven ion pumps have low conductance given their limitation of only one ion per photon absorbed. Anion-conducting channelrhodopsins (ACRs) have been used as effective neuron suppressors in many applications. However, elevated Cl - concentrations in axons and terminals make ACRs activators rather than inhibitors in presynaptic axonal projections. The goal of this project is to address the limitations of current inhibitory tools by developing highly conductive, precise light-gated channels that function as optogenetic silencers for both somas and axons. We do achieve this aim via a new class of optogenetic inhibitory tools based on natural K + -selective light- channels (“kalium channelrhodopsins”, or KCRs), recently discovered and characterized by our team, and mechanism mimics endogenous repolarization in neurons. c c Our aims are: (Aim 1) the identification and electrophysiological characterization of novel KCR homologs with improved characteristics by high-throughput metagenomic screening for natural variants; (Aim 2) Protein engineering of the best of the KCRs to enhance their utility as optogenetic tools via four complementary approaches: (i) structure/function-guided mutagenesis, (ii) automated patch-clamp electrophysiology, (iii) high-throughput fluorescence-based screening, and (iv) machine-learning-based approaches; and (Aim 3) Characterization and optimization of KCR-based optogenetic inhibition in the mouse primary visual cortex and thalamocortical projection to characterize and optimize KCR- based optogenetic inhibition in living animals. by cellular St-Pierre. limitations to of diseases to accomplish our aims, we have assembled an expert team led by three Principal Investigators with complementary expertise: photobiologist and biochemist John Spudich, system neuroscientist Mingshan Xue, and protein engineer and neuroimaging specialist François St-Pierre. We expect to provide the neuroscience community with optogenetic silencers that, by addressing the current tools, would be deployed as broadly as neuron photo-activators such as ChR2. In addition to their benefits for understanding the brain in healthy and diseased states, KCRs may lead to the development of optogenetic treatments for neuronal hyperexcitability disorders such as epilepsy and neurodegenerative that result in neuronal hyperexcitability such as Parkinson's and Alzheimer's disease.
摘要
视紫红质抑制转运蛋白作为突触前的突触前目标暂时提出了GATED,它的神经回路的功能关键依赖于激活和抑制回路成分的能力,以随后评估它们对回路其他部分的影响及其影响行为。在过去的20年里,光门控钠离子传导的自然变体和突变体已经被优化,成为有效的神经元光激活剂,针对特定的细胞或局部,定义了被称为光遗传学的技术。然而,与激励性工具相比,工具仍然不发达。光驱动离子泵具有低电导,因为它们的限制是每个吸收的光子只能有一个离子。阴离子传导通道视紫红质(ACRs)作为一种有效的神经元抑制因子在许多领域有着广泛的应用。然而,在突触前轴突投射中,轴突和终末的氯离子浓度升高使ACRS成为激活剂而不是抑制物。该项目的目标是通过开发高导电性、精确的光门通道来解决当前抑制工具的局限性,这些通道可以作为SoMAS和轴突的光遗传消音器。我们确实通过一类新的光遗传抑制工具来实现这一目标,该工具基于我们团队最近发现并表征的天然K+选择性光通道(“钾通道视紫红质”,或KCRs),其机制模拟神经元的内源性复极。我们的目标是:(1)通过高通量自然变异体的元基因组筛选来鉴定和鉴定具有改进特性的新的KCR同源物;(2)通过四种互补的方法对KCR进行蛋白质工程,以增强其作为光遗传工具的实用性:(I)结构/功能导向的突变,(Ii)自动膜片钳电生理学,(Iii)基于高通量荧光的筛选,以及(Iv)基于机器学习的方法;以及(目的3)小鼠初级视皮层和丘脑皮质投射中基于KCR的光遗传抑制的特征和优化,以表征和优化活体动物中基于KCR的光遗传抑制。由蜂窝圣皮埃尔。为了实现我们的目标,我们组建了一个专家团队,由三名具有互补专业知识的首席研究人员领导:光生物学家和生物化学家John Spudich,系统神经学家薛明山,以及蛋白质工程师和神经成像专家François St-Pierre。我们希望为神经科学界提供光遗传消音器,通过解决当前的工具,将像ChR2等神经元光激活器一样广泛地部署。除了在健康和疾病状态下了解大脑的益处外,KCR还可能导致开发光遗传疗法来治疗神经元过度兴奋障碍,如癫痫和导致神经元过度兴奋的神经退行性疾病,如帕金森氏症和阿尔茨海默病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN LEE SPUDICH其他文献
JOHN LEE SPUDICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10166003 - 财政年份:2021
- 资助金额:
$ 314.51万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10380871 - 财政年份:2021
- 资助金额:
$ 314.51万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10576389 - 财政年份:2021
- 资助金额:
$ 314.51万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10237959 - 财政年份:2020
- 资助金额:
$ 314.51万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10413162 - 财政年份:2020
- 资助金额:
$ 314.51万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10677649 - 财政年份:2020
- 资助金额:
$ 314.51万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8359246 - 财政年份:2012
- 资助金额:
$ 314.51万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8510730 - 财政年份:2012
- 资助金额:
$ 314.51万 - 项目类别:
Advanced Naturally Designed Channelrhodopsins for Photocontrol of Neural Activity
用于神经活动光控制的先进自然设计通道视紫红质
- 批准号:
7817521 - 财政年份:2009
- 资助金额:
$ 314.51万 - 项目类别: