Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition

用于光遗传学抑制的天然光门控氯离子通道的分子工程

基本信息

  • 批准号:
    10237959
  • 负责人:
  • 金额:
    $ 122.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Targeted modulation of neural activity is an essential approach in basic and clinical neuroscience research. Optogenetic proteins, such as light-activated ion channels or pumps, enable optical control of neuronal activity with exquisite spatiotemporal precision. Thus, they provide powerful means to interrogate how neural activity contributes to brain functions and alter pathological activity to treat neurological disorders. A variety of excitatory optogenetic tools have been developed to meet different needs of activation paradigms. In contrast, inhibitory tools remain underdeveloped. The most well-developed light-driven ion pumps are still not sufficiently effective in silencing neurons due to their intrinsically low photoefficiency and pumping activity. Newly developed light-gated potassium channels also suffer from their small photocurrents and slow current kinetics. Our discovery of natural light-gated chloride channels, Guillardia theta anion channelrhodopsins 1 and 2 (GtACR1 and GtACR2), led to a new class of inhibitory optogenetic tools that are highly sensitive to light, have outstanding anion selectivity, exhibit time constants of milliseconds, and can generate 10–100-fold larger photocurrents in mammalian cells than previous tools. However, we and others discovered that light activation of light-gated chloride channels in mouse neurons depolarizes the axon and presynaptic terminals to trigger neurotransmitter release even though it inhibits action potentials at the soma. This excitatory action is due to the endogenous high concentrations of chloride in the axon and presynaptic terminals, which create a depolarizing chloride efflux upon channel opening. Thus, axonal excitation impedes the goal of neuronal silencing and complicates the interpretation of experiments using light-gated chloride channels. Another important limitation is that the action spectra of light-gated chloride channels are all within the blue to green- light ranges, limiting their effectiveness in deep brain tissues and flexibility in multiplex optogenetic applications. Therefore, the objective of this project is to overcome these two major limitations of light-gated chloride channels. We will harness protein trafficking machinery, structure-based molecular engineering, high- throughput screening, and protein evolution in nature to eliminate the excitatory effect and expand the action spectra range of natural ACRs. We propose to exploit endogenous protein trafficking mechanisms to restrict ACRs within neuronal somatodendritic domain (Aim 1), perform structure-guided high-throughput mutagenesis screens to create ACR variants with robust outward rectification and photocurrents (Aim 2), and identify spectrally shifted ACR variants through natural ACR homolog screens and high-throughput mutagenesis screens (Aim 3). The proposed research capitalizes on a powerful synergistic collaboration of biophysics, protein engineering, high-throughput screening, neuronal physiology, and system neuroscience. The successful completion of this project will present to the neuroscience community a set of much improved inhibitory optogenetic tools with potent efficacy, minimal side effects, and diverse spectral sensitivities.
项目摘要/摘要 靶向调节神经活动是基础和临床神经科学研究的基本方法。 光遗传蛋白,如光激活离子通道或泵,能够实现对神经元活动的光学控制 有着精致的时空精确度。因此,它们提供了强有力的手段来询问神经活动是如何 有助于大脑功能和改变病理活动,以治疗神经疾病。各种各样的 兴奋性光遗传工具已经被开发出来,以满足激活范例的不同需求。相比之下, 抑制工具仍然不发达。最发达的光驱动离子泵仍然不够 由于其内在的低光效和泵送活性,有效地使神经元沉默。新开 发达的光门控钾通道也存在光电流小和电流动力学慢的问题。 我们发现的天然光门氯离子通道,Guillardia theta阴离子通道视紫红质1和2 (GtACR1和GtACR2),导致了一类对光高度敏感的新型抑制性光遗传工具,具有 出色的阴离子选择性,表现出毫秒的时间常数,并可产生10-100倍的 在哺乳动物细胞中的光电流比以前的工具要好。然而,我们和其他人发现光激活 小鼠神经元上的光门氯离子通道使轴突和突触前终末去极化以触发 神经递质的释放,即使它抑制了胞体的动作电位。这种兴奋行为是由于 轴突和突触前终末的内源性高浓度氯,产生了 通道打开时,去极化氯化物外流。因此,轴突兴奋阻碍了神经元的目标。 沉默并使使用光门氯离子通道的实验的解释复杂化。另一个 重要的限制是光门氯离子通道的作用光谱都在蓝到绿的范围内。 光线范围,限制了其在深部脑组织中的有效性和多重光遗传的灵活性 申请。因此,本项目的目标就是克服光门的这两大局限性 氯离子通道。我们将利用蛋白质运输机制,基于结构的分子工程,高度... 通过筛选,并在自然界中对蛋白质的进化消除兴奋作用而扩大作用 天然ACR的光谱范围。我们建议利用内源性蛋白运输机制来限制 神经元躯体树突域内的ACRs(Aim 1),进行结构导向的高通量突变 筛选产生具有强大的外向整流和光电流的ACR变体(目标2),并识别 通过天然ACR同源筛选和高通量突变获得光谱移位的ACR变体 屏幕(目标3)。这项拟议的研究利用了生物物理学的强大协同合作, 蛋白质工程、高通量筛选、神经生理学和系统神经科学。这个 该项目的成功完成将向神经科学界展示一套大大改进的 具有强大功效、最小副作用和多种光谱敏感度的抑制性光遗传工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOHN LEE SPUDICH其他文献

JOHN LEE SPUDICH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金

Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
  • 批准号:
    10731153
  • 财政年份:
    2023
  • 资助金额:
    $ 122.86万
  • 项目类别:
High-Throughput Automated Patch Clamp System
高通量自动化膜片钳系统
  • 批准号:
    10425476
  • 财政年份:
    2022
  • 资助金额:
    $ 122.86万
  • 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
  • 批准号:
    10166003
  • 财政年份:
    2021
  • 资助金额:
    $ 122.86万
  • 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
  • 批准号:
    10380871
  • 财政年份:
    2021
  • 资助金额:
    $ 122.86万
  • 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
  • 批准号:
    10576389
  • 财政年份:
    2021
  • 资助金额:
    $ 122.86万
  • 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
  • 批准号:
    10413162
  • 财政年份:
    2020
  • 资助金额:
    $ 122.86万
  • 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
  • 批准号:
    10677649
  • 财政年份:
    2020
  • 资助金额:
    $ 122.86万
  • 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
  • 批准号:
    8359246
  • 财政年份:
    2012
  • 资助金额:
    $ 122.86万
  • 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
  • 批准号:
    8510730
  • 财政年份:
    2012
  • 资助金额:
    $ 122.86万
  • 项目类别:
Advanced Naturally Designed Channelrhodopsins for Photocontrol of Neural Activity
用于神经活动光控制的先进自然设计通道视紫红质
  • 批准号:
    7817521
  • 财政年份:
    2009
  • 资助金额:
    $ 122.86万
  • 项目类别:

相似海外基金

CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Standard Grant
Reactivity and photochemistry of halide anions: atmospheric implications
卤化物阴离子的反应性和光化学:大气影响
  • 批准号:
    DP240100612
  • 财政年份:
    2024
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Discovery Projects
RUI: Characterizing Valence, Temporary, and Non-valence Anions: Computational Methods and Photo-detachment Spectroscopy
RUI:表征化合价、临时和非化合价阴离子:计算方法和光分离光谱
  • 批准号:
    2303652
  • 财政年份:
    2023
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Continuing Grant
Novel Catalysis by Lewis Acid Weakly Coordinated Anions
路易斯酸弱配位阴离子的新型催化
  • 批准号:
    23KJ0761
  • 财政年份:
    2023
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Controlling Coordination Octahedral Rotation and Inducing Ferroelectricity in Layered Perovskite Oxides with Intercalated Anions
插层阴离子层状钙钛矿氧化物中控制配位八面体旋转并诱导铁电性
  • 批准号:
    23H01869
  • 财政年份:
    2023
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RUI: Post-synthetic transformations of anions in metal chalcogenide nanoparticles: Uncovering synthetic design rules and the effect on subsequent transformations
RUI:金属硫族化物纳米颗粒中阴离子的合成后转化:揭示合成设计规则以及对后续转化的影响
  • 批准号:
    2312618
  • 财政年份:
    2023
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Standard Grant
Effects of mixed anions and passivation on perovskite solar cells fabricated by vapor-phase deposition
混合阴离子和钝化对气相沉积钙钛矿太阳能电池的影响
  • 批准号:
    23K04656
  • 财政年份:
    2023
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2208744
  • 财政年份:
    2022
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Standard Grant
Donor-Stabilized Fluorido Cations and New Tungsten-Based Weakly Coordinating Anions
供体稳定的氟阳离子和新型钨基弱配位阴离子
  • 批准号:
    RGPIN-2022-03698
  • 财政年份:
    2022
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Discovery Grants Program - Individual
CAS-Climate:Collaborative Research:Understanding How Electrochemical Cation Trapping in Metal Oxides Enhances Subsequent Reversible Insertion of Anions in Forming Metal Oxyhalides
CAS-气候:合作研究:了解金属氧化物中的电化学阳离子捕获如何增强随后形成金属卤氧化物时阴离子的可逆插入
  • 批准号:
    2221646
  • 财政年份:
    2022
  • 资助金额:
    $ 122.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了