Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
基本信息
- 批准号:10576389
- 负责人:
- 金额:$ 62.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAlgaeAnionsBasic ScienceBiomedical ResearchBrain MappingCardiac MyocytesCationsCell membraneCellsChlamydomonas reinhardtiiClinical TrialsColorCoupledCryoelectron MicroscopyDarknessDiseaseDistantElectrophysiology (science)EngineeringEpilepsyFamilyGenetic TechniquesGenomeHeart DiseasesImageIn VitroInvestigational TherapiesIon Channel GatingIonsKineticsKnowledgeLaboratoriesLearningLightMicrobial RhodopsinsMiningMolecularMolecular ConformationMutagenesisNeuronsNeurosciences ResearchOpticsParkinson DiseasePathway interactionsPenetrationPhysiologicalProteinsResearchResourcesRetinal PigmentsRhodopsinRoleSeminalSpectrum AnalysisStructureTachycardiaTechniquesTechnologyTissuesVisually Impaired PersonsWorkX-Ray Crystallographybrain circuitryconstrictionheart rhythmin vivoinhibitorinnovationlight gatedmicrobialnervous system disorderneural circuitoptogeneticspainful neuropathyphotoactivationprogramsreceptorredshiftresponsesight restorationtool
项目摘要
My laboratory focuses on the structure, function, and mechanisms of microbial rhodopsins, widespread visual
pigment-like proteins with diverse functions. Over the past decade, a subfamily, light-gated ion channels
(channelrhodopsins), have had exceptional impact because of their central role in the transformative technology
of optogenetics. We originally found them in the chlorophyte alga Chlamydomonas reinhardtii as phototaxis
receptors that depolarize the cell membrane by producing cation currents in response to light. Subsequently
neuroscientists found that these light-gated cation channelrhodopsins (CCRs) expressed in neurons produce
depolarizing currents that enable light to trigger action potentials. Targeted photoactivation of neurons enabled
by expression of CCRs in neural circuits has proven to be a powerful technique transforming many aspects of
neuroscience research. Nevertheless, their light-gated channel activity is one of the least understood rhodopsin
functions in terms of molecular mechanisms. Several advances in our work over the past 5 years, coupled to our
knowledge and expertise over decades of research on microbial rhodopsins, guide our current research strategy.
In 2015 we discovered exclusively anion-conducting (physiologically Cl-) channelrhodopsins (ACRs) in the
distant phylum of cryptophyte algae. A breakthrough for optogenetics, ACRs enable efficient light-induced
hyperpolarization and therefore are potent inhibitors of neuron firing. Also seminal to our research plans, our
recent crystal structure of the most used ACR in optogenetics (GtACR1 from Guillardia theta) revealed a
preexisting tunnel in the closed dark state that we propose is the channel closed by 3 well-defined constrictions.
The GtACR1 tunnel is the only candidate ion pathway imaged in a channelrhodopsin, and provides a valuable
resource for elucidating the mystery of channel gating by light. Principles learned from our study will likely
enhance our understanding also of other microbial rhodopsins. Our current research investigates the diversity
and molecular mechanisms of channelrhodopsins by: (i) ongoing genome mining to expand our knowledge and
also advance optogenetics, focused on ACRs, but including CCRs (e.g. possible K+ and Ca++ channels).
Recently we identified two new ACR families and long-sought red-shifted ACRs (“RubyACRs”) activated by
tissue-penetrating long wavelengths, valuable for optogenetics and opening the way to elucidating color tuning
mechanisms of channelrhodopsins; (ii) unraveling the relationship of electrical steps in channel function to
photochemical transitions by structure-based mutagenesis, photo-electrophysiology in vivo, and kinetic optical
and vibrational spectroscopy in vitro; and (iii) determination of atomic structures by X-ray crystallography and
cryoEM, including innovative approaches to image the transient open-channel conformation. Elucidating
mechanisms of channelrhodopsins will advance basic science and also facilitate engineering to optimize and
tailor them for new optogenetic applications.
我的实验室专注于微生物视紫红质的结构、功能和机制,广泛的视觉
具有多种功能的色素样蛋白。在过去的十年里,一个亚家族,光门控离子通道,
(通道视紫红质),由于其在变革性技术中的核心作用,
光遗传学我们最初发现它们在叶绿素植物莱茵衣藻中作为趋光性
通过对光产生阳离子电流而使细胞膜脱附的受体。随后
神经科学家发现,这些在神经元中表达的光门控阳离子通道视紫红质(CCR)产生
使光能够触发动作电位的去极化电流。神经元的靶向光激活
通过在神经回路中表达CCR已经被证明是一种强大的技术,
神经科学研究。然而,它们的光门控通道活性是最不了解的视紫红质之一,
在分子机制方面发挥作用。在过去五年中,我们的工作取得了一些进展,
数十年来对微生物视紫红质研究的知识和专业知识,指导我们目前的研究战略。
在2015年,我们发现了唯一的阴离子传导(生理Cl-)通道视紫红质(ACR)在
隐藻藻类的遥远门。作为光遗传学的一项突破,ACR能够实现高效的光诱导
因此是神经元放电的有效抑制剂。对我们的研究计划也有重大影响,
光遗传学中最常用的ACR(来自Guillardia theta的GtACR 1)的最新晶体结构揭示了
我们提出的处于封闭黑暗状态的预先存在的隧道是由3个明确限定的收缩部封闭的通道。
GtACR 1通道是在通道视紫红质中成像的唯一候选离子通路,并且提供了有价值的
资源,用于阐明光通道门控的奥秘。从我们的研究中学到的原则可能会
也增强了我们对其他微生物视紫红质的理解。我们目前的研究调查了
和通道视紫红质的分子机制:(i)正在进行的基因组挖掘,以扩大我们的知识,
也推进光遗传学,重点是ACR,但包括CCR(例如可能的K+和Ca++通道)。
最近,我们鉴定了两个新的ACR家族和长期寻找的由细胞因子激活的红移ACR(“RubyACR”)。
穿透组织的长波长,对光遗传学有价值,并开辟了阐明颜色调谐的途径
通道视紫红质的机制;(ii)解开通道功能中的电步骤与
通过基于结构的诱变、体内光电生理学和动力学光学
和体外振动光谱;和(iii)通过X射线晶体学测定原子结构,
cryoEM,包括创新的方法来成像的瞬时开放通道构象。阐明
通道视紫红质的机制将推进基础科学,也有利于工程优化,
为新的光遗传学应用定制它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN LEE SPUDICH其他文献
JOHN LEE SPUDICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金
Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
- 批准号:
10731153 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10166003 - 财政年份:2021
- 资助金额:
$ 62.74万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10380871 - 财政年份:2021
- 资助金额:
$ 62.74万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10237959 - 财政年份:2020
- 资助金额:
$ 62.74万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10413162 - 财政年份:2020
- 资助金额:
$ 62.74万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10677649 - 财政年份:2020
- 资助金额:
$ 62.74万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8359246 - 财政年份:2012
- 资助金额:
$ 62.74万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8510730 - 财政年份:2012
- 资助金额:
$ 62.74万 - 项目类别:
Advanced Naturally Designed Channelrhodopsins for Photocontrol of Neural Activity
用于神经活动光控制的先进自然设计通道视紫红质
- 批准号:
7817521 - 财政年份:2009
- 资助金额:
$ 62.74万 - 项目类别:
相似海外基金
ERI: Characterizing and improving algae-derived biofuel droplet burning
ERI:表征和改善藻类生物燃料液滴燃烧
- 批准号:
2301490 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Standard Grant
North Carolina Center for Coastal Algae, People, and Environment NC-CAPE
北卡罗来纳州沿海藻类、人类和环境中心 NC-CAPE
- 批准号:
2414792 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Continuing Grant
Investigating biosynthesis of the newly discovered natural product euglenatide and distribution across the breadth of Euglenoid algae
研究新发现的天然产物眼虫肽的生物合成及其在眼虫类藻类中的分布
- 批准号:
EP/Y003314/1 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Pathogens of Algae for Biocontrol and Biosecurity
用于生物防治和生物安全的藻类病原体
- 批准号:
EP/Y036808/1 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Research Grant
Molecular fossils, mass extinctions and the rise of complex algae
分子化石、大规模灭绝和复杂藻类的兴起
- 批准号:
DP240100281 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Discovery Projects
CORAL:Compostable Foams from Renewable Algae Sources: development and identification of strategies for their implementation
珊瑚:可再生藻类来源的可堆肥泡沫:制定和确定其实施策略
- 批准号:
EP/Y027701/1 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Fellowship
Species identification, ecological elucidation, and resource value assessment of filamentous fungi parasitic on terrestrial plants and algae in polar regions
极地陆生植物和藻类寄生丝状真菌的物种鉴定、生态解析及资源价值评估
- 批准号:
23K11504 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Carbon sequestration and sustainable product manufacture by algae using a novel photo-bioreactor
使用新型光生物反应器通过藻类进行碳封存和可持续产品制造
- 批准号:
2831630 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Studentship
Elucidation of the molecular mechanisms driving the co-evolution between red tide-causing algae and viruses
阐明驱动赤潮藻类与病毒共同进化的分子机制
- 批准号:
23K14265 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling the genetic basis of the gamete recognition system in brown algae
揭示褐藻配子识别系统的遗传基础
- 批准号:
23K19386 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Grant-in-Aid for Research Activity Start-up