Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
基本信息
- 批准号:10677649
- 负责人:
- 金额:$ 116.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAnionsAxonBehaviorBiophysicsBrainChloride ChannelsChloridesClinicalCollaborationsCommunitiesCytoplasmDetectionEffectivenessEngineeringEpilepsyEvolutionExhibitsGoalsHandHomologous GeneHybridsInvestigationIon ChannelIon PumpsKineticsLeadLightMammalian CellMembraneMolecularMusMutagenesisMutationNatureNeuronsNeurosciencesNeurosciences ResearchOpticsOutcomeParkinson DiseasePathogenesisPathologicPhysiologyPotassium ChannelPreparationPresynaptic TerminalsProtein EngineeringProteinsPumpResearchResistanceRoleSideSpecificityStructureSystemTimeVariantabsorptionattenuationautism spectrum disorderbiophysical propertiesbrain dysfunctionbrain tissuechromophoreexperimental studyflexibilityhigh throughput screeningimprovedinhibitorinsightlight gatedmillisecondnervous system disorderneuralneuronal cell bodyneuroregulationneurotransmitter releasenoveloptogeneticsprotein transportredshiftsensorside effectspatiotemporaltooltraffickingtranscriptomevoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
Targeted modulation of neural activity is an essential approach in basic and clinical neuroscience research.
Optogenetic proteins, such as light-activated ion channels or pumps, enable optical control of neuronal activity
with exquisite spatiotemporal precision. Thus, they provide powerful means to interrogate how neural activity
contributes to brain functions and alter pathological activity to treat neurological disorders. A variety of
excitatory optogenetic tools have been developed to meet different needs of activation paradigms. In contrast,
inhibitory tools remain underdeveloped. The most well-developed light-driven ion pumps are still not sufficiently
effective in silencing neurons due to their intrinsically low photoefficiency and pumping activity. Newly
developed light-gated potassium channels also suffer from their small photocurrents and slow current kinetics.
Our discovery of natural light-gated chloride channels, Guillardia theta anion channelrhodopsins 1 and 2
(GtACR1 and GtACR2), led to a new class of inhibitory optogenetic tools that are highly sensitive to light, have
outstanding anion selectivity, exhibit time constants of milliseconds, and can generate 10–100-fold larger
photocurrents in mammalian cells than previous tools. However, we and others discovered that light activation
of light-gated chloride channels in mouse neurons depolarizes the axon and presynaptic terminals to trigger
neurotransmitter release even though it inhibits action potentials at the soma. This excitatory action is due to
the endogenous high concentrations of chloride in the axon and presynaptic terminals, which create a
depolarizing chloride efflux upon channel opening. Thus, axonal excitation impedes the goal of neuronal
silencing and complicates the interpretation of experiments using light-gated chloride channels. Another
important limitation is that the action spectra of light-gated chloride channels are all within the blue to green-
light ranges, limiting their effectiveness in deep brain tissues and flexibility in multiplex optogenetic
applications. Therefore, the objective of this project is to overcome these two major limitations of light-gated
chloride channels. We will harness protein trafficking machinery, structure-based molecular engineering, high-
throughput screening, and protein evolution in nature to eliminate the excitatory effect and expand the action
spectra range of natural ACRs. We propose to exploit endogenous protein trafficking mechanisms to restrict
ACRs within neuronal somatodendritic domain (Aim 1), perform structure-guided high-throughput mutagenesis
screens to create ACR variants with robust outward rectification and photocurrents (Aim 2), and identify
spectrally shifted ACR variants through natural ACR homolog screens and high-throughput mutagenesis
screens (Aim 3). The proposed research capitalizes on a powerful synergistic collaboration of biophysics,
protein engineering, high-throughput screening, neuronal physiology, and system neuroscience. The
successful completion of this project will present to the neuroscience community a set of much improved
inhibitory optogenetic tools with potent efficacy, minimal side effects, and diverse spectral sensitivities.
项目总结/摘要
神经活动的靶向调节是基础和临床神经科学研究的重要方法。
光遗传蛋白,如光激活离子通道或泵,使神经元活动的光学控制
精确的时空信息因此,它们提供了强有力的手段来询问神经活动如何
有助于大脑功能和改变病理活动,以治疗神经系统疾病。各种
已经开发了兴奋性光遗传学工具以满足激活范例的不同需要。与此相反,
抑制性工具仍然不发达。最发达的光驱动离子泵仍然不足以
由于其固有的低光效率和泵送活性,有效地沉默神经元。新
已开发的光门控钾通道也受到其小光电流和慢电流动力学的影响。
我们发现了天然光门控氯离子通道,Guillardia theta阴离子通道视紫红质1和2
(GtACR 1和GtACR 2),导致一类新的对光高度敏感的抑制性光遗传学工具,
出色的阴离子选择性,表现出毫秒级的时间常数,并且可以产生10-100倍大的
哺乳动物细胞中的光电流比以前的工具。然而,我们和其他人发现,
光门控氯离子通道在小鼠神经元的去极化轴突和突触前末梢触发
尽管它抑制了索马的动作电位,但它仍然抑制了神经递质的释放。这种兴奋作用是由于
轴突和突触前末梢中的内源性高浓度氯化物,
通道开放时去极化氯离子流出。因此,轴突兴奋阻碍了神经元的目标,
沉默,并使使用光门控氯离子通道的实验的解释复杂化。另一
重要的限制是光门控氯离子通道的作用光谱都在蓝色到绿色范围内。
光范围,限制了它们在深部脑组织中的有效性和多重光遗传学中的灵活性。
应用.因此,本项目的目标是克服光门控的这两大局限性
氯离子通道我们将利用蛋白质运输机制,基于结构的分子工程,高-
通过筛选和蛋白质进化消除自然界中的兴奋效应并扩大作用
天然ACR的光谱范围。我们建议利用内源性蛋白质运输机制来限制
神经元体树突结构域内的ACR(Aim 1),执行结构引导的高通量诱变
屏幕创建具有强大向外整流和光电流的ACR变体(目标2),并识别
通过天然ACR同源物筛选和高通量诱变实现光谱移位的ACR变体
屏幕(目标3)。拟议的研究利用了生物物理学的强大协同合作,
蛋白质工程、高通量筛选、神经元生理学和系统神经科学。的
这个项目的成功完成将为神经科学界提供一套改进的
抑制性光遗传学工具具有有效的功效、最小的副作用和多样的光谱灵敏度。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural Foundations of Potassium Selectivity in Channelrhodopsins.
- DOI:10.1128/mbio.03039-22
- 发表时间:2022-12-20
- 期刊:
- 影响因子:6.4
- 作者:
- 通讯作者:
Widefield imaging of rapid pan-cortical voltage dynamics with an indicator evolved for one-photon microscopy.
- DOI:10.1038/s41467-023-41975-3
- 发表时间:2023-10-12
- 期刊:
- 影响因子:16.6
- 作者:Lu, Xiaoyu;Wang, Yunmiao;Liu, Zhuohe;Gou, Yueyang;Jaeger, Dieter;St-Pierre, Francois
- 通讯作者:St-Pierre, Francois
Scanless two-photon voltage imaging.
无扫描双光子电压成像。
- DOI:10.21203/rs.3.rs-2412371/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sims,RuthR;Bendifallah,Imane;Grimm,Christiane;Mohamed-Lafirdeen,Aysha;Lu,Xiaoyu;St-Pierre,François;Papagiakoumou,Eirini;Emiliani,Valentina
- 通讯作者:Emiliani,Valentina
Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic Distribution.
- DOI:10.1128/mbio.01656-21
- 发表时间:2021-08-31
- 期刊:
- 影响因子:6.4
- 作者:Govorunova EG;Sineshchekov OA;Li H;Wang Y;Brown LS;Palmateer A;Melkonian M;Cheng S;Carpenter E;Patterson J;Wong GK;Spudich JL
- 通讯作者:Spudich JL
Sequential absorption of two photons creates a bistable form of RubyACR responsible for its strong desensitization.
- DOI:10.1073/pnas.2301521120
- 发表时间:2023-05-23
- 期刊:
- 影响因子:11.1
- 作者:Sineshchekov, Oleg A.;Govorunova, Elena G.;Li, Hai;Wang, Yumei;Spudich, John L.
- 通讯作者:Spudich, John L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN LEE SPUDICH其他文献
JOHN LEE SPUDICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金
Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
- 批准号:
10731153 - 财政年份:2023
- 资助金额:
$ 116.72万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10166003 - 财政年份:2021
- 资助金额:
$ 116.72万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10380871 - 财政年份:2021
- 资助金额:
$ 116.72万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10576389 - 财政年份:2021
- 资助金额:
$ 116.72万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10237959 - 财政年份:2020
- 资助金额:
$ 116.72万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10413162 - 财政年份:2020
- 资助金额:
$ 116.72万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8359246 - 财政年份:2012
- 资助金额:
$ 116.72万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8510730 - 财政年份:2012
- 资助金额:
$ 116.72万 - 项目类别:
Advanced Naturally Designed Channelrhodopsins for Photocontrol of Neural Activity
用于神经活动光控制的先进自然设计通道视紫红质
- 批准号:
7817521 - 财政年份:2009
- 资助金额:
$ 116.72万 - 项目类别:
相似海外基金
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2427215 - 财政年份:2024
- 资助金额:
$ 116.72万 - 项目类别:
Standard Grant
Reactivity and photochemistry of halide anions: atmospheric implications
卤化物阴离子的反应性和光化学:大气影响
- 批准号:
DP240100612 - 财政年份:2024
- 资助金额:
$ 116.72万 - 项目类别:
Discovery Projects
RUI: Characterizing Valence, Temporary, and Non-valence Anions: Computational Methods and Photo-detachment Spectroscopy
RUI:表征化合价、临时和非化合价阴离子:计算方法和光分离光谱
- 批准号:
2303652 - 财政年份:2023
- 资助金额:
$ 116.72万 - 项目类别:
Continuing Grant
Novel Catalysis by Lewis Acid Weakly Coordinated Anions
路易斯酸弱配位阴离子的新型催化
- 批准号:
23KJ0761 - 财政年份:2023
- 资助金额:
$ 116.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Controlling Coordination Octahedral Rotation and Inducing Ferroelectricity in Layered Perovskite Oxides with Intercalated Anions
插层阴离子层状钙钛矿氧化物中控制配位八面体旋转并诱导铁电性
- 批准号:
23H01869 - 财政年份:2023
- 资助金额:
$ 116.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effects of mixed anions and passivation on perovskite solar cells fabricated by vapor-phase deposition
混合阴离子和钝化对气相沉积钙钛矿太阳能电池的影响
- 批准号:
23K04656 - 财政年份:2023
- 资助金额:
$ 116.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Post-synthetic transformations of anions in metal chalcogenide nanoparticles: Uncovering synthetic design rules and the effect on subsequent transformations
RUI:金属硫族化物纳米颗粒中阴离子的合成后转化:揭示合成设计规则以及对后续转化的影响
- 批准号:
2312618 - 财政年份:2023
- 资助金额:
$ 116.72万 - 项目类别:
Standard Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2208744 - 财政年份:2022
- 资助金额:
$ 116.72万 - 项目类别:
Standard Grant
Donor-Stabilized Fluorido Cations and New Tungsten-Based Weakly Coordinating Anions
供体稳定的氟阳离子和新型钨基弱配位阴离子
- 批准号:
RGPIN-2022-03698 - 财政年份:2022
- 资助金额:
$ 116.72万 - 项目类别:
Discovery Grants Program - Individual
CAS-Climate:Collaborative Research:Understanding How Electrochemical Cation Trapping in Metal Oxides Enhances Subsequent Reversible Insertion of Anions in Forming Metal Oxyhalides
CAS-气候:合作研究:了解金属氧化物中的电化学阳离子捕获如何增强随后形成金属卤氧化物时阴离子的可逆插入
- 批准号:
2221646 - 财政年份:2022
- 资助金额:
$ 116.72万 - 项目类别:
Standard Grant