Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
基本信息
- 批准号:8359246
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-16 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgaeAnabolismAnimal ModelAppearanceBiological AssayBiomedical ResearchBrainCalcium ChannelCandidate Disease GeneCationsCell membraneCell physiologyCellsChlamydomonas reinhardtiiClinicalClinical TrialsComplementary DNAComplexCoupledDataDrosophila genusFigs - dietaryGene Expression ProfileGene SilencingGenetic TechniquesHealthHumanImmune responseInvestigational TherapiesIon ChannelIonsLightMammalian CellMapsMastigophoraMediatingMembraneMembrane PotentialsMembrane ProteinsMicroRNAsMolecularMonitorMusNeuronsOpticsPhotonsPhotophobiaPhotosensitivityPhototransductionProceduresProcessProteinsResearchResolutionRiskStimulusStressSystemTRP channelTechnologyTestingTherapeuticTherapeutic UsesTimeVariantVisionbaseblindbrain tissuegenome-widelight gatedlight intensitymillisecondnervous system disordernew technologyoptogeneticsoverexpressionpatch clampprotein protein interactionreceptorrestorationsensortool
项目摘要
DESCRIPTION (provided by applicant): Algal channelrhodopsins are light-gated channels widely used for targeted photocontrol of neuron activity. Over the past six years, the temporal and spatial precision of their light-activation has proven to be incisive and powerful for research
on brain circuitry, and more recently channelrhodopsin experimental therapy in animal models of neurological diseases has produced promising results. However, the extremely low ion conductance of channelrhodopsins limits their use and is a significant barrier for human clinical trials because it necessitates high level expression and high light intensities. Overexpression of a foreign membrane protein is detrimental to long-term cellular health and also creates an immune response risk. In stark contrast to the poor photosensitivity in neurons, channelrhodopsins in their native algal cells are low abundance photosensory receptors that mediate phototaxis in extremely low light with near single-photon sensitivity. This exquisite photosensitivity derives from the ~103-fold amplification of channelrhodopsin currents by secondary activation of highly conductive Ca2+ channels in the algal plasma membrane. We propose to develop a new class of ultrasensitive optogenetic tools with the ~103-fold greater light sensitivity by amplification of channelrhodopsin action by co-expression with the Ca2+ channels that naturally perform this function in the alga Chlamydomonas reinhardtii. Our approach is to identify molecular components responsible for amplification of channelrhodopsin-mediated photocurrents in the algae and to construct a combined channelrhodopsin-Ca2+ channel tool. We will apply genome-wide transcriptome profiling coupled to electrophysiological assay of the amplification process to identify the Ca2+ channels and other components necessary for amplification, if they exist. Our evidence strongly favors a direct interaction mechanism, so we expect to identify one or more Ca2+ channels capable of direct amplification by protein-protein interaction. We will further analyze their action by microRNA silencing, and use this information to re-create in mammalian cells an ultrasensitive channelrhodopsin-Ca2+ channel complex used by algae for dim-light phototaxis. We expect this new optogenetic tool to be able to be effective when expressed in the plasma membrane at protein levels well below those that stress human cells. These ultrasensitive molecular complexes will remove a significant barrier to their clinical use, as well as enhance research on neurocircuitry, enabling brain studies not possible with current technology.
PUBLIC HEALTH RELEVANCE: Channelrhodopsins are photoactive proteins enabling light activation of neurons by combined optical and genetic techniques ("optogenetics"). Light-activation of channelrhodopsins has been used to map circuitry in mammalian brain tissue, as well as for experimental therapeutics, including restoration of vision in blind mice. This project seeks to develop new types of optogenetic tools with ~1000-fold higher sensitivity than the currently available ones, based on interaction of channelrhodopsins with specific Ca2+ channels. Such ultrasensitive light-activated channel complexes will enable biomedical research not possible with current technology and overcome a significant barrier to clinical use of optogenetics in humans.
描述(申请人提供):藻类通道视紫红质是一种光门通道,广泛用于神经元活动的靶向光控制。在过去的六年里,它们光激活的时间和空间精度已被证明是尖锐和强大的研究
最近,在神经疾病的动物模型中,视紫红质的实验治疗已经产生了令人振奋的结果。然而,通道视紫红质极低的离子电导限制了它们的使用,并且是人类临床试验的一个重要障碍,因为它需要高水平的表达和高光强。外来膜蛋白的过度表达对细胞的长期健康有害,还会造成免疫反应风险。与神经元的光敏性差形成鲜明对比的是,它们的天然藻细胞中的通道视紫红质是低丰度的光敏受体,在极弱的光线下调节趋光性,具有接近单光子的敏感性。这种精致的光敏性来自于藻质膜高电导钙通道的二次激活,使通道视紫红质电流放大约103倍。我们建议开发一类新的超灵敏的光遗传工具,通过在莱茵衣藻中与自然执行这一功能的钙通道共表达来放大通道视紫红质的作用,从而使光敏感度提高约103倍。我们的方法是确定负责放大通道视紫红质介导的藻类光电流的分子成分,并构建一个组合的通道视紫红质-钙通道工具。我们将应用全基因组转录组图谱与扩增过程的电生理分析相结合的方法来识别扩增所需的钙通道和其他成分,如果它们存在的话。我们的证据强烈支持直接相互作用机制,因此我们希望确定一个或多个能够通过蛋白质-蛋白质相互作用直接扩增的钙通道。我们将进一步分析它们通过microRNA沉默的作用,并利用这些信息在哺乳动物细胞中重建一个超敏感的通道-视紫红质-钙通道复合体,藻类利用它来进行暗光趋光。我们希望这种新的光遗传工具在质膜上以远低于对人类细胞施加压力的蛋白质水平表达时能够有效。这些超灵敏的分子络合物将消除它们临床应用的一个重大障碍,并加强对神经电路的研究,使目前的技术无法进行大脑研究。
与公共健康相关:通道视紫红质是一种光活性蛋白质,能够通过结合光学和遗传技术(“光遗传学”)激活神经元。视紫红质通道的光激活已被用于绘制哺乳动物脑组织中的电路,以及用于实验治疗,包括恢复盲鼠的视力。该项目旨在开发新型的光遗传工具,其灵敏度比目前可用的工具高约1000倍,其基础是通道视紫红质与特定的钙通道的相互作用。这种超灵敏的光激活通道复合体将使生物医学研究成为可能,并克服光遗传学在人类临床应用的重大障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN LEE SPUDICH其他文献
JOHN LEE SPUDICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金
Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
- 批准号:
10731153 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10166003 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10380871 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
- 批准号:
10576389 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10237959 - 财政年份:2020
- 资助金额:
$ 22.8万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10413162 - 财政年份:2020
- 资助金额:
$ 22.8万 - 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
- 批准号:
10677649 - 财政年份:2020
- 资助金额:
$ 22.8万 - 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
- 批准号:
8510730 - 财政年份:2012
- 资助金额:
$ 22.8万 - 项目类别:
Advanced Naturally Designed Channelrhodopsins for Photocontrol of Neural Activity
用于神经活动光控制的先进自然设计通道视紫红质
- 批准号:
7817521 - 财政年份:2009
- 资助金额:
$ 22.8万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 22.8万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 22.8万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 22.8万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 22.8万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




