Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies

建立模型以最大限度地减少癌症风险预测研究中的检测偏差

基本信息

  • 批准号:
    10020923
  • 负责人:
  • 金额:
    $ 39.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-19 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Cancer risk prediction is a critical step towards the development of targeted cancer prevention and screening policies. There is a growing awareness that cancer risk prediction studies may be distorted by detection bias, particularly in screened populations. Detection bias occurs when screening and diagnostic patterns vary in association with potential risk factors. Detection bias can exaggerate or attenuate estimated disease-risk factor associations and may adversely affect our ability to develop sound prevention and screening policies. The objective of this application is to change the way that detection bias is assessed and addressed in cancer risk prediction. We will harness the technique of disease natural history modeling to decouple the underlying risk of disease from observed screening and diagnosis histories. We will rigorously investigate the performance of disease modeling to reduce detection bias and will apply our approach to assess and address detection bias that may already be impacting early detection guidelines in prostate and breast cancer. We will disseminate our models via an online user interface that will permit investigators conducting risk prediction studies in screened populations to assess their studies' susceptibility to detection bias. Finally, we will study the impact of detection bias on policy-relevant outcomes via a proof-of-concept study of prostate cancer screening. Our specific aims are as follows: Aim 1 [Methods development]: Develop and validate a cancer modeling method for assessing and reducing detection bias in risk prediction studies based on screened populations; Aim 2 [Breast density application]: Apply the method developed in Aim 1 to assess and remediate any detection bias in published associations between breast density and breast cancer risk. Despite the major policy implications of findings that breast density leads to an elevated risk of breast cancer diagnosis, these findings have never been interrogated for detection bias; Aim3 [Software dissemination]: Develop, test, and deploy an online user interface that will permit investigators conducting cancer risk prediction studies in screened populations to assess the potential detection bias; Aim 4 [Policy impact]: Assess the impact of detection bias on harm-benefit tradeoffs of candidate prostate cancer screening policies as a proof of concept for the translation of detection bias to the policy setting. This application will pioneer the use of disease modeling as tool for addressing a source of bias that may be present across a wide range of policy-driving cancer risk predictions. The investigator team is comprised of leading investigators in the development of disease models for early detection. The proposed work will produce the most rigorous analysis to date of the way that detection bias works and how it may be addressed in practice.
项目总结/摘要 癌症风险预测是发展针对性癌症预防和筛查的关键一步 施政纲要而人们越来越意识到,癌症风险预测研究可能会因检测偏倚而失真, 特别是在筛选的人群中。当筛查和诊断模式不同时, 与潜在危险因素的关系。检测偏倚可能夸大或削弱估计的疾病风险因素 协会,并可能对我们制定健全的预防和筛查政策的能力产生不利影响。 该应用程序的目的是改变癌症检测偏倚的评估和解决方式 风险预测我们将利用疾病自然史建模技术来消除潜在风险 从观察到的筛查和诊断历史中发现疾病。我们将严格调查 疾病建模,以减少检测偏倚,并将应用我们的方法来评估和解决检测偏倚 这可能已经影响了前列腺癌和乳腺癌的早期检测指南。我们将传播我们的 通过在线用户界面建立模型,使研究人员能够在筛选的 评估他们的研究对检测偏倚的敏感性。最后,我们将研究检测的影响 通过对前列腺癌筛查的概念验证研究,对政策相关结果的偏见。 我们的具体目标如下:目标1 [方法开发]:开发和验证癌症模型 基于筛选人群的风险预测研究中评估和减少检测偏倚的方法目的 2 [乳腺密度应用]:应用目标1中开发的方法评估和补救任何检测 发表的乳腺密度和乳腺癌风险之间的关联的偏差。尽管重大政策 乳腺密度导致乳腺癌诊断风险升高的研究结果的影响,这些研究结果 从未被询问过检测偏倚;目标3 [软件传播]:开发、测试和部署一个 在线用户界面,允许研究人员在筛选的患者中进行癌症风险预测研究 目标4 [政策影响]:评估检测偏倚的影响 关于候选前列腺癌筛查政策的利弊权衡,作为翻译的概念验证 对政策设置的检测偏差。 该应用程序将开创性地使用疾病建模作为解决偏倚来源的工具, 目前在广泛的政策驱动的癌症风险预测。调查员小组由以下人员组成: 领导研究人员开发用于早期检测的疾病模型。拟议的工作将产生 这是迄今为止对检测偏差的工作方式以及如何在实践中解决它的最严格的分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RUTH D ETZIONI其他文献

RUTH D ETZIONI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RUTH D ETZIONI', 18)}}的其他基金

Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
  • 批准号:
    10683180
  • 财政年份:
    2020
  • 资助金额:
    $ 39.45万
  • 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
  • 批准号:
    10461832
  • 财政年份:
    2020
  • 资助金额:
    $ 39.45万
  • 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
  • 批准号:
    10601453
  • 财政年份:
    2020
  • 资助金额:
    $ 39.45万
  • 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
  • 批准号:
    10260543
  • 财政年份:
    2020
  • 资助金额:
    $ 39.45万
  • 项目类别:
Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies
建立模型以最大限度地减少癌症风险预测研究中的检测偏差
  • 批准号:
    10601444
  • 财政年份:
    2019
  • 资助金额:
    $ 39.45万
  • 项目类别:
Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies
建立模型以最大限度地减少癌症风险预测研究中的检测偏差
  • 批准号:
    10246991
  • 财政年份:
    2019
  • 资助金额:
    $ 39.45万
  • 项目类别:
Estimating Overdiagnosis in Cancer Screening Studies
评估癌症筛查研究中的过度诊断
  • 批准号:
    9267345
  • 财政年份:
    2015
  • 资助金额:
    $ 39.45万
  • 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
  • 批准号:
    8969577
  • 财政年份:
    2015
  • 资助金额:
    $ 39.45万
  • 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
  • 批准号:
    9332349
  • 财政年份:
    2015
  • 资助金额:
    $ 39.45万
  • 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
  • 批准号:
    9132188
  • 财政年份:
    2015
  • 资助金额:
    $ 39.45万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了