Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies
建立模型以最大限度地减少癌症风险预测研究中的检测偏差
基本信息
- 批准号:10601444
- 负责人:
- 金额:$ 33.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-19 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Cancer risk prediction is a critical step towards the development of targeted cancer prevention and screening
policies. There is a growing awareness that cancer risk prediction studies may be distorted by detection bias,
particularly in screened populations. Detection bias occurs when screening and diagnostic patterns vary in
association with potential risk factors. Detection bias can exaggerate or attenuate estimated disease-risk factor
associations and may adversely affect our ability to develop sound prevention and screening policies.
The objective of this application is to change the way that detection bias is assessed and addressed in cancer
risk prediction. We will harness the technique of disease natural history modeling to decouple the underlying risk
of disease from observed screening and diagnosis histories. We will rigorously investigate the performance of
disease modeling to reduce detection bias and will apply our approach to assess and address detection bias
that may already be impacting early detection guidelines in prostate and breast cancer. We will disseminate our
models via an online user interface that will permit investigators conducting risk prediction studies in screened
populations to assess their studies' susceptibility to detection bias. Finally, we will study the impact of detection
bias on policy-relevant outcomes via a proof-of-concept study of prostate cancer screening.
Our specific aims are as follows: Aim 1 [Methods development]: Develop and validate a cancer modeling
method for assessing and reducing detection bias in risk prediction studies based on screened populations; Aim
2 [Breast density application]: Apply the method developed in Aim 1 to assess and remediate any detection
bias in published associations between breast density and breast cancer risk. Despite the major policy
implications of findings that breast density leads to an elevated risk of breast cancer diagnosis, these findings
have never been interrogated for detection bias; Aim3 [Software dissemination]: Develop, test, and deploy an
online user interface that will permit investigators conducting cancer risk prediction studies in screened
populations to assess the potential detection bias; Aim 4 [Policy impact]: Assess the impact of detection bias
on harm-benefit tradeoffs of candidate prostate cancer screening policies as a proof of concept for the translation
of detection bias to the policy setting.
This application will pioneer the use of disease modeling as tool for addressing a source of bias that may be
present across a wide range of policy-driving cancer risk predictions. The investigator team is comprised of
leading investigators in the development of disease models for early detection. The proposed work will produce
the most rigorous analysis to date of the way that detection bias works and how it may be addressed in practice.
项目总结/摘要
癌症风险预测是发展针对性癌症预防和筛查的关键一步
施政纲要而人们越来越意识到,癌症风险预测研究可能会因检测偏倚而失真,
特别是在筛选的人群中。当筛查和诊断模式不同时,
与潜在危险因素的关系。检测偏倚可能夸大或削弱估计的疾病风险因素
协会,并可能对我们制定健全的预防和筛查政策的能力产生不利影响。
该应用程序的目的是改变癌症检测偏倚的评估和解决方式
风险预测我们将利用疾病自然史建模技术来消除潜在风险
从观察到的筛查和诊断历史中发现疾病。我们将严格调查
疾病建模,以减少检测偏倚,并将应用我们的方法来评估和解决检测偏倚
这可能已经影响了前列腺癌和乳腺癌的早期检测指南。我们将传播我们的
通过在线用户界面建立模型,使研究人员能够在筛选的
评估他们的研究对检测偏倚的敏感性。最后,我们将研究检测的影响
通过对前列腺癌筛查的概念验证研究,对政策相关结果的偏见。
我们的具体目标如下:目标1 [方法开发]:开发和验证癌症模型
基于筛选人群的风险预测研究中评估和减少检测偏倚的方法目的
2 [乳腺密度应用]:应用目标1中开发的方法评估和补救任何检测
发表的乳腺密度和乳腺癌风险之间的关联的偏差。尽管重大政策
乳腺密度导致乳腺癌诊断风险升高的研究结果的影响,这些研究结果
从未被询问过检测偏倚;目标3 [软件传播]:开发、测试和部署一个
在线用户界面,允许研究人员在筛选的患者中进行癌症风险预测研究
目标4 [政策影响]:评估检测偏倚的影响
关于候选前列腺癌筛查政策的利弊权衡,作为翻译的概念证明
对政策设置的检测偏差。
该应用程序将开创性地使用疾病建模作为解决偏倚来源的工具,
目前在广泛的政策驱动的癌症风险预测。调查员小组由以下人员组成:
领导研究人员开发用于早期检测的疾病模型。拟议的工作将产生
这是迄今为止对检测偏差的工作方式以及如何在实践中解决它的最严格的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUTH D ETZIONI其他文献
RUTH D ETZIONI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RUTH D ETZIONI', 18)}}的其他基金
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
- 批准号:
10683180 - 财政年份:2020
- 资助金额:
$ 33.06万 - 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
- 批准号:
10461832 - 财政年份:2020
- 资助金额:
$ 33.06万 - 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
- 批准号:
10601453 - 财政年份:2020
- 资助金额:
$ 33.06万 - 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
- 批准号:
10260543 - 财政年份:2020
- 资助金额:
$ 33.06万 - 项目类别:
Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies
建立模型以最大限度地减少癌症风险预测研究中的检测偏差
- 批准号:
10020923 - 财政年份:2019
- 资助金额:
$ 33.06万 - 项目类别:
Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies
建立模型以最大限度地减少癌症风险预测研究中的检测偏差
- 批准号:
10246991 - 财政年份:2019
- 资助金额:
$ 33.06万 - 项目类别:
Estimating Overdiagnosis in Cancer Screening Studies
评估癌症筛查研究中的过度诊断
- 批准号:
9267345 - 财政年份:2015
- 资助金额:
$ 33.06万 - 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
- 批准号:
8969577 - 财政年份:2015
- 资助金额:
$ 33.06万 - 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
- 批准号:
9332349 - 财政年份:2015
- 资助金额:
$ 33.06万 - 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
- 批准号:
9132188 - 财政年份:2015
- 资助金额:
$ 33.06万 - 项目类别:
相似海外基金
Microbiome applications and technological hubs as solutions to minimize food loss and waste - FOODGUARD
微生物组应用和技术中心作为减少粮食损失和浪费的解决方案 - FOODGUARD
- 批准号:
10094820 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
EU-Funded
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
- 批准号:
2233894 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
Research of preventive and therapeutic methods to minimize radiation damage in cancer treatment
研究减少癌症治疗中辐射损伤的预防和治疗方法
- 批准号:
23K15954 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Marine sponge depsipeptides to minimize antibiotic collateral damage
海洋海绵缩酚肽可最大程度地减少抗生素的附带损害
- 批准号:
10726689 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
SCC-IRG Track 1: Preparing for Future Pandemics: Subway Crowd Management to Minimize Airborne Transmission of Respiratory Viruses (Way-CARE)
SCC-IRG 第 1 轨道:为未来的流行病做好准备:地铁人群管理以最大限度地减少呼吸道病毒的空气传播 (Way-CARE)
- 批准号:
2218809 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
Continuing Grant
CAREER: 3D Printing High Lipid Content Cultivated Meat to Minimize Livestock Environmental Impacts
事业:3D 打印高脂质含量的栽培肉以最大限度地减少牲畜环境影响
- 批准号:
2236998 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
Continuing Grant
Development of an Opioid Sparing Therapeutic to Minimize Opioid Use Disorderand Tolerance in the Treatment of Pain
开发阿片类药物节约疗法,以最大限度地减少阿片类药物使用障碍和疼痛治疗耐受性
- 批准号:
10760487 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
Community Disaster Responses to Minimize Impacts on Informal Sector Businesses
社区救灾,尽量减少对非正规部门企业的影响
- 批准号:
22KF0055 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Defining kinase interaction pathways to enhance anti-cancer efficacy and minimize associated morbidities of kinase inhibitor drugs.
定义激酶相互作用途径,以增强抗癌功效并最大限度地减少激酶抑制剂药物的相关发病率。
- 批准号:
10644554 - 财政年份:2023
- 资助金额:
$ 33.06万 - 项目类别:
Low INR to Minimize bleeding with mechanical valves trial (LIMIT)
低INR以最大限度地减少机械瓣膜出血试验(LIMIT)
- 批准号:
469962 - 财政年份:2022
- 资助金额:
$ 33.06万 - 项目类别:
Operating Grants