Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies

建立模型以最大限度地减少癌症风险预测研究中的检测偏差

基本信息

  • 批准号:
    10246991
  • 负责人:
  • 金额:
    $ 5.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-19 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Cancer risk prediction is a critical step towards the development of targeted cancer prevention and screening policies. There is a growing awareness that cancer risk prediction studies may be distorted by detection bias, particularly in screened populations. Detection bias occurs when screening and diagnostic patterns vary in association with potential risk factors. Detection bias can exaggerate or attenuate estimated disease-risk factor associations and may adversely affect our ability to develop sound prevention and screening policies. The objective of this application is to change the way that detection bias is assessed and addressed in cancer risk prediction. We will harness the technique of disease natural history modeling to decouple the underlying risk of disease from observed screening and diagnosis histories. We will rigorously investigate the performance of disease modeling to reduce detection bias and will apply our approach to assess and address detection bias that may already be impacting early detection guidelines in prostate and breast cancer. We will disseminate our models via an online user interface that will permit investigators conducting risk prediction studies in screened populations to assess their studies' susceptibility to detection bias. Finally, we will study the impact of detection bias on policy-relevant outcomes via a proof-of-concept study of prostate cancer screening. Our specific aims are as follows: Aim 1 [Methods development]: Develop and validate a cancer modeling method for assessing and reducing detection bias in risk prediction studies based on screened populations; Aim 2 [Breast density application]: Apply the method developed in Aim 1 to assess and remediate any detection bias in published associations between breast density and breast cancer risk. Despite the major policy implications of findings that breast density leads to an elevated risk of breast cancer diagnosis, these findings have never been interrogated for detection bias; Aim3 [Software dissemination]: Develop, test, and deploy an online user interface that will permit investigators conducting cancer risk prediction studies in screened populations to assess the potential detection bias; Aim 4 [Policy impact]: Assess the impact of detection bias on harm-benefit tradeoffs of candidate prostate cancer screening policies as a proof of concept for the translation of detection bias to the policy setting. This application will pioneer the use of disease modeling as tool for addressing a source of bias that may be present across a wide range of policy-driving cancer risk predictions. The investigator team is comprised of leading investigators in the development of disease models for early detection. The proposed work will produce the most rigorous analysis to date of the way that detection bias works and how it may be addressed in practice.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RUTH D ETZIONI其他文献

RUTH D ETZIONI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RUTH D ETZIONI', 18)}}的其他基金

Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
  • 批准号:
    10683180
  • 财政年份:
    2020
  • 资助金额:
    $ 5.86万
  • 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
  • 批准号:
    10461832
  • 财政年份:
    2020
  • 资助金额:
    $ 5.86万
  • 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
  • 批准号:
    10601453
  • 财政年份:
    2020
  • 资助金额:
    $ 5.86万
  • 项目类别:
Modeling Precision Interventions for Prostate Cancer Control
前列腺癌控制的精准干预建模
  • 批准号:
    10260543
  • 财政年份:
    2020
  • 资助金额:
    $ 5.86万
  • 项目类别:
Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies
建立模型以最大限度地减少癌症风险预测研究中的检测偏差
  • 批准号:
    10020923
  • 财政年份:
    2019
  • 资助金额:
    $ 5.86万
  • 项目类别:
Modeling to Minimize Detection Bias in Cancer Risk Prediction Studies
建立模型以最大限度地减少癌症风险预测研究中的检测偏差
  • 批准号:
    10601444
  • 财政年份:
    2019
  • 资助金额:
    $ 5.86万
  • 项目类别:
Estimating Overdiagnosis in Cancer Screening Studies
评估癌症筛查研究中的过度诊断
  • 批准号:
    9267345
  • 财政年份:
    2015
  • 资助金额:
    $ 5.86万
  • 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
  • 批准号:
    8969577
  • 财政年份:
    2015
  • 资助金额:
    $ 5.86万
  • 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
  • 批准号:
    9332349
  • 财政年份:
    2015
  • 资助金额:
    $ 5.86万
  • 项目类别:
Modeling to Improve Prostate Cancer Outcomes Across Diverse Populations
改善不同人群前列腺癌预后的建模
  • 批准号:
    9132188
  • 财政年份:
    2015
  • 资助金额:
    $ 5.86万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了