Multiplexed pathogen identification via bead-based isothermal amplification in a low-cost microfluidic device

在低成本微流体装置中通过基于珠子的等温扩增进行多重病原体识别

基本信息

项目摘要

Summary: Treatment decisions for respiratory infections, diarrheal diseases, sepsis, and urinary tract infections (UTIs) are tied to the identification and differentiation of the many possible infection-causing pathogen(s). Nucleic acids (NAs) are effective biomarkers for pathogen identification, but detecting nucleic acid sequences typically requires some variation of the polymerase chain reaction (PCR), necessitating complex instrumentation and trained staff that are only found in centralized laboratories. The long-term goal of the proposed project is to develop a point- of-care (POC)-compatible microfluidic device for DNA amplification and detection of 9 different UTI-causing pathogens. The proposed project will focus on developing the amplification and detection components, which in future efforts will be integrated with sample preparation. In the herein proposed system, the user will add extracted DNA to a disposable cartridge, external instruments will actuate fluid handling, thermal control, and imaging, and the results will be available 1 hr later. This method will use isothermal nucleic acid amplification, which is more suitable for POC settings than PCR because it requires no thermocycling, resulting in less expensive and more robust systems. However, isothermal nucleic acid amplification is usually not suitable for higher order multiplexing (> 2 or 3 NA sequences). To achieve high-order multiplexing, the proposed method will combine the advantages of spatial multiplexing, where the sample is divided into and amplified within distinct compartments, and color-based multiplexing, where color of a unique oligonucleotide detection probe is used to identify an amplified sequence. However, we will circumvent the limitations of these two approaches, such as loss of sensitivity in spatial multiplexing due to sample dilution, and limited filter space to differentiate excitation and emission of multiple fluorophores in color multiplexing. We will use clonal isothermal nucleic acid amplification inside a water-in-oil emulsion with fluorescently encoded microbeads, followed by detection in a microchannel. In Aim 1, we will establish the required processes to generate the droplet-bead emulsions and isothermally amplify NAs within each droplet, resulting in amplicons bound to the microbeads, followed by breaking open the emulsion, and isolating the beads for imaging. In Aim 2, we will design and fabricate a microfluidic device appropriate for use at the point-of-care to execute the processes developed in Aim 1. In Aim 3, we will test the device with extracted DNA from UTI pathogens to validate the device's accuracy in identifying the correct pathogen. In future work, we will create a small compact instrument (< 1 ft3) that autonomously actuates the fluid handling, thermal control, and imaging components in an integrated user friendly format with the microfluidic device developed here. This device will also be coupled with upstream sample preparation and we will test the entire sample-to-answer process with actual clinical UTI samples.
简介:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Travis S. Schlappi其他文献

Improving the Speed and Performance of Point-of-Care Diagnostics with Microfluidics
利用微流控技术提高即时诊断的速度和性能
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Travis S. Schlappi
  • 通讯作者:
    Travis S. Schlappi
Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma
短链聚磷酸盐的定位增强了其凝固流动血浆的能力
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    J. Yeon;Nima Mazinani;Travis S. Schlappi;Karen Y. T. Chan;J. Baylis;Stephanie A. Smith;Alexander J. Donovan;Damien Kudela;G. Stucky;Y. Liu;J. Morrissey;C. Kastrup
  • 通讯作者:
    C. Kastrup

Travis S. Schlappi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Travis S. Schlappi', 18)}}的其他基金

Pilot study for low-cost, rapid, and accessible infectious disease diagnostics via alpha particle detection
通过阿尔法粒子检测进行低成本、快速且易于获得的传染病诊断的试点研究
  • 批准号:
    10549827
  • 财政年份:
    2022
  • 资助金额:
    $ 16.37万
  • 项目类别:
Pilot study for low-cost, rapid, and accessible infectious disease diagnostics via alpha particle detection
通过阿尔法粒子检测进行低成本、快速且易于获得的传染病诊断的试点研究
  • 批准号:
    10440761
  • 财政年份:
    2022
  • 资助金额:
    $ 16.37万
  • 项目类别:
Multiplexed pathogen identification via bead-based isothermal amplification in a low-cost microfluidic device
在低成本微流体装置中通过基于珠子的等温扩增进行多重病原体识别
  • 批准号:
    10264024
  • 财政年份:
    2019
  • 资助金额:
    $ 16.37万
  • 项目类别:

相似海外基金

Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
  • 批准号:
    2902098
  • 财政年份:
    2024
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
  • 批准号:
    BB/Y004035/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
  • 批准号:
    EP/Z533026/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
  • 批准号:
    FT230100468
  • 财政年份:
    2024
  • 资助金额:
    $ 16.37万
  • 项目类别:
    ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
  • 批准号:
    MR/Y033809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
  • 批准号:
    494853
  • 财政年份:
    2023
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
  • 批准号:
    2884862
  • 财政年份:
    2023
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
  • 批准号:
    2904356
  • 财政年份:
    2023
  • 资助金额:
    $ 16.37万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了