Multiplexed pathogen identification via bead-based isothermal amplification in a low-cost microfluidic device
在低成本微流体装置中通过基于珠子的等温扩增进行多重病原体识别
基本信息
- 批准号:10264024
- 负责人:
- 金额:$ 16.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBase SequenceBindingBiological AssayBiological MarkersCandida albicansClinicalColorCommunicable DiseasesComplexCoupledCytolysisDNADNA amplificationDetectionDevicesDyesEmulsionsEncapsulatedEnterococcus faecalisFutureGenus staphylococcusGoalsHealthcareImageImmobilizationInfectionKlebsiella pneumoniaeLaboratoriesLactobacillusLiquid substanceMethodsMicrofluidic MicrochipsMicrofluidicsMicrospheresNucleic Acid Amplification TestsNucleic AcidsOilsOligonucleotidesOrganismPatientsPerformancePhysiciansPolymerase Chain ReactionPreparationProcessProteus mirabilisPseudomonas aeruginosaReactionReagentResourcesRespiratory Tract InfectionsSamplingSensitivity and SpecificitySepsisSpecificityStaphylococcus aureusStreptococcus Group BSurfaceSystemTestingTrainingTranslatingUrinary tract infectionUropathogenic E. coliVariantWaterWorkamplification detectionbaseclinically relevantcostcross reactivitydesigndiarrheal diseaseeffective therapyfight againstfluorescence microscopefluorophorehuman DNAinstrumentinstrumentationisothermal amplificationoptical imagingpathogenpoint of careuser-friendly
项目摘要
Summary:
Treatment decisions for respiratory infections, diarrheal diseases, sepsis, and urinary tract infections (UTIs)
are tied to the identification and differentiation of the many possible infection-causing pathogen(s). Nucleic acids
(NAs) are effective biomarkers for pathogen identification, but detecting nucleic acid sequences typically requires
some variation of the polymerase chain reaction (PCR), necessitating complex instrumentation and trained staff
that are only found in centralized laboratories. The long-term goal of the proposed project is to develop a point-
of-care (POC)-compatible microfluidic device for DNA amplification and detection of 9 different UTI-causing
pathogens. The proposed project will focus on developing the amplification and detection components, which in
future efforts will be integrated with sample preparation. In the herein proposed system, the user will add
extracted DNA to a disposable cartridge, external instruments will actuate fluid handling, thermal control, and
imaging, and the results will be available 1 hr later. This method will use isothermal nucleic acid amplification,
which is more suitable for POC settings than PCR because it requires no thermocycling, resulting in less
expensive and more robust systems. However, isothermal nucleic acid amplification is usually not suitable for
higher order multiplexing (> 2 or 3 NA sequences). To achieve high-order multiplexing, the proposed method will
combine the advantages of spatial multiplexing, where the sample is divided into and amplified within distinct
compartments, and color-based multiplexing, where color of a unique oligonucleotide detection probe is used to
identify an amplified sequence. However, we will circumvent the limitations of these two approaches, such as
loss of sensitivity in spatial multiplexing due to sample dilution, and limited filter space to differentiate excitation
and emission of multiple fluorophores in color multiplexing. We will use clonal isothermal nucleic acid
amplification inside a water-in-oil emulsion with fluorescently encoded microbeads, followed by detection in a
microchannel. In Aim 1, we will establish the required processes to generate the droplet-bead emulsions and
isothermally amplify NAs within each droplet, resulting in amplicons bound to the microbeads, followed by
breaking open the emulsion, and isolating the beads for imaging. In Aim 2, we will design and fabricate a
microfluidic device appropriate for use at the point-of-care to execute the processes developed in Aim 1. In Aim
3, we will test the device with extracted DNA from UTI pathogens to validate the device's accuracy in identifying
the correct pathogen. In future work, we will create a small compact instrument (< 1 ft3) that autonomously
actuates the fluid handling, thermal control, and imaging components in an integrated user friendly format with
the microfluidic device developed here. This device will also be coupled with upstream sample preparation and
we will test the entire sample-to-answer process with actual clinical UTI samples.
总结:
呼吸道感染、呼吸道疾病、败血症和尿路感染(UTI)的治疗决策
与许多可能引起感染的病原体的鉴定和区分有关。核酸
(NAs)是病原体鉴定的有效生物标志物,但检测核酸序列通常需要
聚合酶链反应(PCR)的一些变化,需要复杂的仪器和训练有素的工作人员
只有在中心实验室才能找到。该项目的长期目标是开发一个点-
用于DNA扩增和检测9种不同UTI引起的
病原体拟议项目将侧重于开发扩增和检测组件,
今后的工作将与样品制备相结合。在本文提出的系统中,用户将添加
提取的DNA到一次性盒中,外部仪器将启动流体处理,热控制,
成像,结果将在1小时后提供。该方法将使用等温核酸扩增,
这比PCR更适合于POC设置,因为它不需要热循环,
更昂贵和更强大的系统。然而,等温核酸扩增通常不适用于扩增。
高阶复用(> 2或3个NA序列)。为了实现高阶复用,所提出的方法将
联合收割机结合了空间多路复用的优点,在空间多路复用中,样品被分成不同的部分并在不同的部分内被放大。
隔室,和基于颜色的多路复用,其中独特的寡核苷酸检测探针的颜色用于
鉴定扩增序列。但是,我们将绕过这两种方法的限制,例如
由于样品稀释,空间多路复用中的灵敏度损失,以及用于区分激发的有限滤波器空间
以及在颜色多路复用中发射多个荧光团。我们将使用克隆等温核酸
在具有荧光编码的微珠的油包水乳液内进行扩增,然后在
微通道在目标1中,我们将建立产生液滴-珠粒乳液所需的工艺,
等温扩增每个液滴内的NA,产生与微珠结合的扩增子,然后
将乳液破碎,并分离珠粒用于成像。在目标2中,我们将设计和制造一个
微流体装置适合在护理点使用,以执行目标1中开发的过程。在Aim中
3,我们将用从UTI病原体中提取的DNA测试该设备,以验证该设备在识别UTI病原体方面的准确性。
正确的病原体在未来的工作中,我们将创建一个小型紧凑型仪器(< 1立方英尺),可以自主操作
以集成的用户友好格式驱动流体处理、热控制和成像组件,
微流控装置就是在这里开发的。该装置还将与上游样品制备和
我们将用实际的临床UTI样本测试整个样本到答案的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Travis S. Schlappi其他文献
Improving the Speed and Performance of Point-of-Care Diagnostics with Microfluidics
利用微流控技术提高即时诊断的速度和性能
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Travis S. Schlappi - 通讯作者:
Travis S. Schlappi
Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma
短链聚磷酸盐的定位增强了其凝固流动血浆的能力
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.6
- 作者:
J. Yeon;Nima Mazinani;Travis S. Schlappi;Karen Y. T. Chan;J. Baylis;Stephanie A. Smith;Alexander J. Donovan;Damien Kudela;G. Stucky;Y. Liu;J. Morrissey;C. Kastrup - 通讯作者:
C. Kastrup
Travis S. Schlappi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Travis S. Schlappi', 18)}}的其他基金
Pilot study for low-cost, rapid, and accessible infectious disease diagnostics via alpha particle detection
通过阿尔法粒子检测进行低成本、快速且易于获得的传染病诊断的试点研究
- 批准号:
10549827 - 财政年份:2022
- 资助金额:
$ 16.37万 - 项目类别:
Pilot study for low-cost, rapid, and accessible infectious disease diagnostics via alpha particle detection
通过阿尔法粒子检测进行低成本、快速且易于获得的传染病诊断的试点研究
- 批准号:
10440761 - 财政年份:2022
- 资助金额:
$ 16.37万 - 项目类别:
Multiplexed pathogen identification via bead-based isothermal amplification in a low-cost microfluidic device
在低成本微流体装置中通过基于珠子的等温扩增进行多重病原体识别
- 批准号:
10002215 - 财政年份:2019
- 资助金额:
$ 16.37万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 16.37万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 16.37万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 16.37万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 16.37万 - 项目类别:
Studentship