Coarse-graining approaches to networks, learning, and behavior

网络、学习和行为的粗粒度方法

基本信息

  • 批准号:
    10002224
  • 负责人:
  • 金额:
    $ 35.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-20 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary The theory hub put forward in this proposal will work to translate successful and powerful approaches to describing emergent collective behavior in physical systems so they can be applied to the brain. Working closely together, the three theorists will develop methods for finding and quantifying the relevant modes of population activity in the brain, both in instantaneous snapshots of activity and activity as it evolves in time. Methods will be tested in a wide range of neural systems at different processing stages and scales: from salamanders to rodents to humans, from the retina to the cortex, from tens to thousands of cells. The approach will be validated by checking that the neural code can be read out with high fidelity even after being compressed into a much smaller subspace. The project will produce data analysis code that will be made available for neuroscience researchers to use on their own data, in addition to the results of the analyses of the particular systems studied. The neural code is inherently collective; while single neurons execute sophisticated computations, hundreds to thousands of neurons are utilized to sense the environment and drive behavior in even the simplest organisms. Although the past hundred years have yielded substantial progress in neuroscience, only recently have researchers had the capacity to record from complete neural populations - that is, to view the collective behavior of a functioning neural network. With these rapid experimental advances, there is an urgent need for complementary theoretical and computational approaches to guide the exploration of emergent behavior in large groups of neurons, allowing one to turn `big data' into `big ideas'. This proposal outlines a path towards a new theoretical framework for finding and quantitatively analyzing collective phenomena in the brain that underlie sensory coding, the representation of space, prediction, and ultimately drive behavior. The project draws heavily on the success of so-called renormalization group approaches in theoretical physics that revolutionized the understanding of collective phenomena in physical systems, and sculpted much of the progress in statistical physics in the second half of the twentieth century. The methods explored in this proposal generalize such techniques so they can be applied to a much wider range of problems. The methods developed by this theory hub based on the renormalization group will be applicable to a wide range of neural data since they are explicitly designed to generalize techniques from theoretical physics to a much broader setting. Indeed, a larger goal of the approach is to search for universality in collective behavior in the neural code. The techniques proposed are relatively straightforward to execute and will provide a fundamental methodology for interrogating high-dimensional data in fields as diverse as behavioral neuroscience and biophysics. The new techniques will also be taught as part of the three theorists' ongoing efforts to expose incoming graduate students in biological sciences to quantitative methods in biology.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM BIALEK其他文献

WILLIAM BIALEK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM BIALEK', 18)}}的其他基金

Coarse-graining approaches to networks, learning, and behavior
网络、学习和行为的粗粒度方法
  • 批准号:
    9789319
  • 财政年份:
    2018
  • 资助金额:
    $ 35.35万
  • 项目类别:
Dissecting Sensorimotor Pathways Underlying Social Interactions: Models, Circuits, and Behavior
剖析社会互动背后的感觉运动通路:模型、回路和行为
  • 批准号:
    10338085
  • 财政年份:
    2018
  • 资助金额:
    $ 35.35万
  • 项目类别:
Mechanisms of neural circuit dynamics in working memory
工作记忆中神经回路动力学的机制
  • 批准号:
    9126618
  • 财政年份:
    2014
  • 资助金额:
    $ 35.35万
  • 项目类别:
Mechanisms of neural circuit dynamics in working memory
工作记忆中神经回路动力学的机制
  • 批准号:
    8935973
  • 财政年份:
    2014
  • 资助金额:
    $ 35.35万
  • 项目类别:
Mechanisms of neural circuit dynamics in working memory
工作记忆中神经回路动力学的机制
  • 批准号:
    8827069
  • 财政年份:
    2014
  • 资助金额:
    $ 35.35万
  • 项目类别:
A new paradigm for quantifying animal behavior in a model genetic system
量化模型遗传系统中动物行为的新范例
  • 批准号:
    8662277
  • 财政年份:
    2011
  • 资助金额:
    $ 35.35万
  • 项目类别:
A new paradigm for quantifying animal behavior in a model genetic system
量化模型遗传系统中动物行为的新范例
  • 批准号:
    8310220
  • 财政年份:
    2011
  • 资助金额:
    $ 35.35万
  • 项目类别:
A new paradigm for quantifying animal behavior in a model genetic system
量化模型遗传系统中动物行为的新范例
  • 批准号:
    8074696
  • 财政年份:
    2011
  • 资助金额:
    $ 35.35万
  • 项目类别:
A new paradigm for quantifying animal behavior in a model genetic system
量化模型遗传系统中动物行为的新范例
  • 批准号:
    8469526
  • 财政年份:
    2011
  • 资助金额:
    $ 35.35万
  • 项目类别:
Dynamics, scaling, and precision of morphogen gradients in the Drosophila embryo
果蝇胚胎形态发生素梯度的动力学、尺度和精度
  • 批准号:
    7388851
  • 财政年份:
    2006
  • 资助金额:
    $ 35.35万
  • 项目类别:

相似海外基金

Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
  • 批准号:
    23K06786
  • 财政年份:
    2023
  • 资助金额:
    $ 35.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Animal, Behavior and Tissue Core
动物、行为和组织核心
  • 批准号:
    10496282
  • 财政年份:
    2023
  • 资助金额:
    $ 35.35万
  • 项目类别:
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
  • 批准号:
    RGPIN-2022-03096
  • 财政年份:
    2022
  • 资助金额:
    $ 35.35万
  • 项目类别:
    Discovery Grants Program - Individual
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
  • 批准号:
    RGPIN-2019-06689
  • 财政年份:
    2022
  • 资助金额:
    $ 35.35万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
  • 批准号:
    22H03637
  • 财政年份:
    2022
  • 资助金额:
    $ 35.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
  • 批准号:
    DGECR-2022-00323
  • 财政年份:
    2022
  • 资助金额:
    $ 35.35万
  • 项目类别:
    Discovery Launch Supplement
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
  • 批准号:
    10315486
  • 财政年份:
    2021
  • 资助金额:
    $ 35.35万
  • 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
  • 批准号:
    10412977
  • 财政年份:
    2021
  • 资助金额:
    $ 35.35万
  • 项目类别:
REU Site: Animal Behavior in Context
REU 网站:背景下的动物行为
  • 批准号:
    2050311
  • 财政年份:
    2021
  • 资助金额:
    $ 35.35万
  • 项目类别:
    Standard Grant
Molecular recording to predict cell fate decisions and animal behavior
分子记录预测细胞命运决定和动物行为
  • 批准号:
    10260139
  • 财政年份:
    2021
  • 资助金额:
    $ 35.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了