Transcription factor regulation of CD4 and CD8 T cell effector and memory differentiation and function
CD4 和 CD8 T 细胞效应及记忆分化和功能的转录因子调节
基本信息
- 批准号:10024583
- 负责人:
- 金额:$ 205.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Antibody ResponseAntiviral AgentsB-LymphocytesBiologyCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCD8B1 geneCHD7 geneCellsCellular biologyChromatinComplexConsumptionCustomCytotoxic T-LymphocytesDataDevelopmentEffector CellGene ExpressionGene Expression RegulationGenerationsGenesGenetic EpistasisGenetic ScreeningGenetic TranscriptionHelper-Inducer T-LymphocyteHeterogeneityHistone DeacetylaseHumanIRF4 geneImmunityInterventionKnockout MiceKnowledgeLibrariesLinkMalignant NeoplasmsMedicalMemoryMolecularNatureNuRD complexPaperPathway interactionsPopulationProcessProviderRUNX3 geneRegulationRegulator GenesRoleSystemT cell differentiationT cell responseT memory cellT-LymphocyteT-Lymphocyte SubsetsTestingTimeTissuesVaccine DesignVaccinesVirus DiseasesWorkadaptive immunitybasecost effectivecytotoxic CD8 T cellseffector T cellepigenetic regulationexperienceexperimental studyin vivoinsightmemory CD4 T lymphocyteneoplasm immunotherapypathogenprogramssynergismtechnology developmenttranscription factortumorvector
项目摘要
ABSTRACT
(Overall Component)
The three Projects vigorously pursue an understanding of antiviral CD4 and CD8 T cells, linked by the theme:
what transcription factors regulate these cells and how do they do so? T cell differentiation into various effector
cells, and the capacity to differentiate into memory cells, are important parts of adaptive immunity to pathogens
and cancers. Transcription factors (TFs) are central regulators of these differentiation processes. The
identification of key TFs regulating different pathways of CD4 and CD8 T cell differentiation have been central
to understanding the biology of these cells. However, it is abundantly clear that TFs do not act in isolation and
many TFs may be important inducers or repressors of a T cell differentiation pathway. The biggest challenge to
studying TF network biology is that experimental manipulation of more than 1 factor at a time under controlled
conditions has not been generally feasible, particularly in primary cells in vivo. Therefore, the focus on 1 gene
at a time has been an experimental necessity for decades; the generation of double and triple knockout mice is
excessively time consuming. Therefore, our approach as a group to this serious problem has been focused on
experimental approaches whereby we can modulate and test many genes in parallel for their roles in antiviral T
cell responses in vivo, using custom shRNAmir vector-based approaches. We have established these
systems, and are able to perform genetic screens, in vivo, in primary CD4 or CD8 T cells, probing
differentiation and function. Our projects propose a highly integrated approach to revealing the biology of
regulation and differentiation of T follicular helper (Tfh) CD4 T cells, memory CD4 T cells, CTL CD8 T cells,
circulating memory CD8 T cells, and tissue-resident CD8 and CD4 T cells (Trm). The three PIs have worked
intensively together over the past 5 years to develop important insights into TF biology in T cells. The
interactions are not simply via shared cores, they involve extensive shared experiments and ideas regarding
TFs, CRs, epigenetics, and gene regulation networks. This is most clearly seen in our 2017 Nature paper on
Trm and Runx3. That work is connected to our earlier work together predicting TF regulators of gene
expression in T cells, and our most recent paper together, defining the dominant pioneer factor role of Runx3 in
the earliest steps of effector CD8 T cell differentiation and defining how Runx3 interacts with other TFs that we
have studied, including T-bet, Blimp-1, IRF4, TCF1, and Id2. Our collective experience is that our screens
identify multiple critical factors, more than can be comprehensively studied in the context of a single project.
Therefore, the equally important challenge—and where our Program’s synergy stands out—is narrowing down
the candidate molecules to particular ‘high value’ TFs and CRs that have a major influence on T cell
programming. Our three Projects acquire such data in the orthogonal screens and epistasis experiments
proposed by each Project, which allow us to converge quickly on important targets to study in detail.
抽象的
(整体组成部分)
这三个项目积极追求对抗病毒 CD4 和 CD8 T 细胞的理解,其主题如下:
哪些转录因子调节这些细胞以及它们是如何发挥作用的? T细胞分化成各种效应细胞
细胞以及分化为记忆细胞的能力是对病原体的适应性免疫的重要组成部分
和癌症。转录因子(TF)是这些分化过程的核心调节因子。这
调节 CD4 和 CD8 T 细胞分化不同途径的关键 TF 的鉴定至关重要
了解这些细胞的生物学。然而,很明显,TF 并不是孤立行动的,而且
许多 TF 可能是 T 细胞分化途径的重要诱导剂或抑制剂。最大的挑战是
研究 TF 网络生物学是在受控条件下一次对 1 个以上因子进行实验操作
条件通常不可行,特别是在体内原代细胞中。因此,重点关注1个基因
几十年来,曾经一度是实验的必需品;双敲除和三敲除小鼠的产生
过于耗时。因此,我们作为一个团队解决这个严重问题的方法一直集中在
我们可以并行调节和测试许多基因在抗病毒 T 中的作用的实验方法
使用基于定制 shRNAmir 载体的方法进行体内细胞反应。我们建立了这些
系统,并且能够在原代 CD4 或 CD8 T 细胞中进行体内遗传筛选、探测
分化和功能。我们的项目提出了一种高度集成的方法来揭示生物学
滤泡辅助性 T (Tfh) CD4 T 细胞、记忆 CD4 T 细胞、CTL CD8 T 细胞的调节和分化,
循环记忆 CD8 T 细胞,以及组织驻留 CD8 和 CD4 T 细胞 (Trm)。三位PI发挥了作用
在过去的 5 年里,我们紧密合作,对 T 细胞中的 TF 生物学产生了重要的见解。这
交互不仅仅是通过共享核心,它们涉及广泛的共享实验和想法
TF、CR、表观遗传学和基因调控网络。这一点在我们 2017 年《自然》杂志的论文中得到了最清晰的体现:
Trm 和 Runx3。这项工作与我们早期共同预测基因 TF 调节因子的工作相关
T 细胞中的表达,以及我们最近的论文,定义了 Runx3 在 T 细胞中的主导先驱因子作用
效应 CD8 T 细胞分化的最早步骤,以及定义 Runx3 如何与我们研究的其他 TF 相互作用
已研究过,包括 T-bet、Blimp-1、IRF4、TCF1 和 Id2。我们的集体经验是我们的屏幕
确定多个关键因素,这些因素超出了在单个项目的背景下可以全面研究的范围。
因此,同样重要的挑战——也是我们计划的协同作用突出的地方——正在缩小范围
对 T 细胞有重大影响的特定“高价值”TF 和 CR 的候选分子
编程。我们的三个项目在正交筛选和上位实验中获取这些数据
每个项目提出的建议,使我们能够快速集中在重要目标上进行详细研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shane P Crotty其他文献
Shane P Crotty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shane P Crotty', 18)}}的其他基金
Immune engineering of optimized sequential immunization strategies for HIV vaccines
HIV疫苗序贯免疫策略优化的免疫工程
- 批准号:
10588202 - 财政年份:2021
- 资助金额:
$ 205.7万 - 项目类别:
Immune engineering of optimized sequential immunization strategies for HIV vaccines
HIV疫苗序贯免疫策略优化的免疫工程
- 批准号:
10383728 - 财政年份:2021
- 资助金额:
$ 205.7万 - 项目类别:
T follicular helper (Tfh) CD4+ T cell, germinal center, and antibody response dysfunction in human recurrent tonsillitis
人复发性扁桃体炎中滤泡辅助性 T (Tfh) CD4 T 细胞、生发中心和抗体反应功能障碍
- 批准号:
10304742 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:
Bcl6 and transcription factors that program TFH differentiation and function
Bcl6 和转录因子编程 TFH 分化和功能
- 批准号:
10224892 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:
Bcl6 and transcription factors that program TFH differentiation and function
Bcl6 和转录因子编程 TFH 分化和功能
- 批准号:
10683269 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:
Functional and dysfunctional human CD4 T cell and B cell responses to bacteria and viruses
功能性和功能失调的人类 CD4 T 细胞和 B 细胞对细菌和病毒的反应
- 批准号:
10285994 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:
相似海外基金
Development of a new generation of antiviral agents that are effective against drug-resistant viruses and prevent serious illness and sequelae.
开发新一代抗病毒药物,可有效对抗耐药病毒并预防严重疾病和后遗症。
- 批准号:
23K18186 - 财政年份:2023
- 资助金额:
$ 205.7万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A versatile structure-based therapeutic platform for development of VHH-based antitoxin and antiviral agents
一个多功能的基于结构的治疗平台,用于开发基于 VHH 的抗毒素和抗病毒药物
- 批准号:
10560883 - 财政年份:2023
- 资助金额:
$ 205.7万 - 项目类别:
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
- 批准号:
10730692 - 财政年份:2021
- 资助金额:
$ 205.7万 - 项目类别:
Design and synthesis of nucleosides to develop antiviral agents and oligonucleotide therapeutics
设计和合成核苷以开发抗病毒药物和寡核苷酸疗法
- 批准号:
21K06459 - 财政年份:2021
- 资助金额:
$ 205.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
- 批准号:
10189880 - 财政年份:2021
- 资助金额:
$ 205.7万 - 项目类别:
Computer-aided identification and synthesis of novel broad-spectrum antiviral agents
新型广谱抗病毒药物的计算机辅助鉴定和合成
- 批准号:
2404261 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:
Studentship
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10222540 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10669717 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:
Association between sedentary lifestyle and liver cancer development in hepatitis C patients treated with direct-acting antiviral agents
接受直接抗病毒药物治疗的丙型肝炎患者久坐的生活方式与肝癌发展之间的关系
- 批准号:
20K10713 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10174522 - 财政年份:2020
- 资助金额:
$ 205.7万 - 项目类别:














{{item.name}}会员




