Iron in Mitochondrial Physiology and Disease
铁在线粒体生理学和疾病中的作用
基本信息
- 批准号:8632557
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenineBindingBiological AssayCell ExtractsCell physiologyCellsCharacteristicsChelating AgentsCommunitiesComplexCoupledCysteineCytosolDevelopmentDiseaseElectron MicroscopyFundingGenesHealthHemeHomeostasisHumanIonsIronJurkat CellsLiquid ChromatographyMass Spectrum AnalysisMetabolismMethodsMitochondriaMitochondrial DiseasesMonitorMossbauer SpectroscopyNutrientOrganellesOxygenPathway interactionsPhenotypePhysiologyPlasmaPlayProcessProteinsPublic HealthRNA InterferenceReactive Oxygen SpeciesRegulationResearchRoentgen RaysRoleSamplingServicesSpectrum AnalysisSulfurSystemSystems BiologyTimeTransferrinTransition ElementsTranslational ResearchUnited States National Institutes of HealthYeastsabsorptionbiophysical techniquescell injuryfrataxingenetic straingenetically modified cellsheme biosynthesisinsightinterestknock-downmass spectrometermolecular massnanoparticlenoveloverexpressionparticleprogramspublic health relevancetime usetrafficking
项目摘要
Iron in Mitochondrial Physiology and Disease (PI: Paul Alan Lindahl)
Project Summary
Iron plays critical roles in cellular metabolism, human health and disease. Fe/S clusters and hemes are
synthesized in mitochondria and thus much cellular Fe is imported into this organelle. One aim of this
translational research program is to elucidate the Fe-associated players involved in these processes, as this
will provide new mechanistic insights into cellular Fe metabolism and help develop new strategies to treat Fe-
related diseases. A great challenge in Fe trafficking is to determine whether low-molecular-mass (LMM) Fe
complexes participate. Using a liquid chromatography system with an on-line ICP-MS, we have detected
numerous LMM Fe complexes in yeast and human Jurkat cells. We are particularly interested in cytosolic Fe
species that are imported into mitochondria, and in mitochondrial Fe species that are used for Fe/S cluster
and/or heme biosynthesis. We will characterize and identify these LMM Fe complexes using M¿ssbauer (MB),
EPR, mass spectrometry, NMR and X-ray absorption spectroscopy. We will probe the cellular functions of
these species and identify associated Fe pathways leading into and operating within mitochondria. We will use
WT cells grown under different conditions, and various genetic strains in which Fe metabolism has been
altered. Fe trafficking will also be examined on the systems biology level using an ensemble of interrelated
spectroscopic probes centered on MB spectroscopy. The distribution of Fe in WT and genetically modified cells
and their organelles will be used to address the mechanism of Fe trafficking. We will examine strains that
either accumulate or deplete Fe from the cytosol or mitos. We will characterize the mechanism of Fe/S cluster
and heme biosynthesis by developing an assay for these processes using intact isolated mitos. We will
determine whether a MB-detectable pool of mitochondrial FeII is used for Fe/S cluster and/or heme
biosynthesis, and determine the function of each component of the pool. We will evaluate whether Fe is
exported from mitochondria. We will investigate Fe trafficking in human cells that have been genetically
modified to allow RNAi knockdowns and overexpressions of genes involved in Fe metabolism. We will knock-
down frataxin and examine the phenotype that develops over time and with the extent of knock-down at long
times. We will determine the order in which various Fe-accumulation characteristics develop and establish a
mechanism for the genesis of the resulting diseased state. Other genes involved in Fe metabolism and disease
will be knocked-down and/or overexpressed. Finally, we will dedicate a portion of our MB time to collecting and
interpreting spectra of samples from other NIH-supported labs who study cellular Fe metabolism.
Relevance of this research to public health. Numerous iron-associated diseases are related to problems in
transporting iron into different parts of the cell. Iron often accumulates in the mitochondria, generating very
small iron particles and highly reactive oxygen species that damage cells. Analogous diseased states will be
recreated in yeast and human cells, and studied using sophisticated biophysical and bioanalytical methods.
1
铁在线粒体生理学和疾病(PI:保罗艾伦林达尔)
项目摘要
铁在细胞代谢、人体健康和疾病中起着关键作用。Fe/S簇合物和血红素是
在线粒体中合成,因此大量的细胞铁被输入到这个细胞器中。这样做的目的之一
翻译研究计划是阐明铁相关的球员参与这些过程,因为这
将为细胞铁代谢提供新的机制见解,并有助于开发治疗铁代谢的新策略。
相关疾病。铁运输的一个巨大挑战是确定低分子量(LMM)铁是否
综合体参与。使用液相色谱系统与在线ICP-MS,我们已经检测到
在酵母和人Jurkat细胞中存在大量LMM Fe复合物。我们对胞质Fe特别感兴趣
线粒体中的Fe种主要用于Fe/S簇
和/或血红素生物合成。我们将使用穆斯堡尔谱(MB)表征和鉴定这些LMM Fe络合物,
EPR、质谱、NMR和X射线吸收光谱。我们将探索
这些物种,并确定相关的铁途径,导致和线粒体内运作。我们将使用
WT细胞生长在不同的条件下,和各种遗传菌株,其中铁代谢已被破坏。
改变了还将在系统生物学水平上使用相互关联的
以MB光谱为中心的光谱探针。铁在WT和转基因细胞中的分布
其细胞器将被用来解决铁的运输机制。我们将检测
从细胞质或线粒体中积累或消耗铁。我们将对Fe/S团簇的形成机理进行研究
和血红素生物合成的方法。我们将
确定线粒体Fe II的MB可检测池是否用于Fe/S簇和/或血红素
生物合成,并确定池的每个组分的功能。我们将评估Fe是否
由线粒体输出。我们将研究铁在人类细胞中的运输,
修饰以允许RNAi敲除和过量表达参与Fe代谢的基因。我们会敲门-
下调共济失调蛋白,并检查随着时间的推移和长期敲低的程度而发展的表型。
次我们将确定各种铁积累特征发展的顺序,并建立一个
导致疾病状态发生的机制。其他参与铁代谢和疾病的基因
将被敲低和/或过表达。最后,我们将把一部分MB时间用于收集和
解释来自其他NIH支持的研究细胞铁代谢的实验室的样品光谱。
这项研究与公共卫生的相关性。许多与铁相关的疾病与以下问题有关:
将铁转运到细胞的不同部位。铁通常积聚在线粒体中,
小的铁颗粒和高活性氧物质,破坏细胞。类似的疾病状态
在酵母和人类细胞中重建,并使用复杂的生物物理和生物分析方法进行研究。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL A. LINDAHL其他文献
PAUL A. LINDAHL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL A. LINDAHL', 18)}}的其他基金
Iron Trafficking and Regulation in Biological Systems
生物系统中的铁贩运和调节
- 批准号:
9910417 - 财政年份:2018
- 资助金额:
$ 29.9万 - 项目类别:
Iron Trafficking and Regulation in Biological Systems
生物系统中的铁贩运和调节
- 批准号:
10393033 - 财政年份:2018
- 资助金额:
$ 29.9万 - 项目类别:
相似海外基金
The Role of Adenine Nucleotide Translocase in Mitochondrial Dysfunction Associated Senescence in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在慢性阻塞性肺病(COPD)线粒体功能相关衰老中的作用
- 批准号:
10633608 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10794933 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10534031 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Development of nobel assay methods for miRNA and adenine methyltransferase using FRET
使用 FRET 开发 miRNA 和腺嘌呤甲基转移酶的诺贝尔检测方法
- 批准号:
21K05120 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Critical assessment of DNA adenine methylation in brain cells from healthy aging and Alzheimer's disease
健康老龄化和阿尔茨海默病脑细胞 DNA 腺嘌呤甲基化的批判性评估
- 批准号:
10365337 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10033546 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10613902 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10226235 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10396102 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10705982 - 财政年份:2020
- 资助金额:
$ 29.9万 - 项目类别:














{{item.name}}会员




