Modeling observer performance in low-dose CT assessments

对低剂量 CT 评估中观察者的表现进行建模

基本信息

项目摘要

Project Summary/Abstract X-ray computed tomography (CT) has become a mainstay of diagnostic imaging in many areas of medicine because of its ability to render internal structures of the body with high accuracy. This has resulted in a substantial increase in the use of CT imaging in the United States. As a result, there has been sustained interest in dose reduction in CT imaging. However, demonstrating effective dose reduction is challenging. By definition, such techniques seek to retain diagnostic quality with little or no measureable effect on diagnostic performance. Clinical reader studies using receiver operating characteristic (ROC) methodology are the accepted standard for evaluating diagnostic performance effects. However, these studies are expensive and time consuming, and identifying small effects requires prohibitively large sets of readers and cases. This has led to the development of “model-observers” for dose reduction claims at the US Food and Drug Administration (FDA). At this time, at least three dose reduction claims at FDA have used model observer studies to substantiate their claim of CT dose reduction using iterative reconstruction algorithms. The basis for this project is our recognition that such models have had relatively little validation, given the complexity of both the human visual system and the images being evaluated. We propose an in-depth characterization of human observer responses in tasks related to dose reduction in CT. The purpose of this research is to develop and validate a model (or models) of observer performance for use in assessments of image reconstruction for CT dose reduction. For a model observer to be of use in this area, it must be accepted as a reasonable predictor of human-observer performance for some range of relevant tasks. This motivates our general approach, and many specifics of our research plan. Our plan is to collect an initial set of psychophysical data, use this data to develop our model, and then predict performance in CT reconstructions from simulations at a variety of doses. We then collect the psychophysical data on these images to quantify predictive accuracy and to compare it to the accuracy of other models. Specific Aim 1 involves the collection of psychophysical data in tasks with noise statistics similar to CT dose assessments. Specific Aim 2 seeks to develop models of task performance by fitting model parameter for several candidate models to the data from Aim 1. Specific Aim 3 proposes a prospective prediction of observer performance in a new set of psychophysical data from images that have been reconstructed using modern iterative methods. At the conclusion of the project period, we expect to have a better understanding of how observers perform difficult localization and discrimination tasks in noisy CT images, and how this process in influenced by the dose associated with images.
项目总结/摘要 X射线计算机断层扫描(CT)已经成为许多医疗领域诊断成像的支柱。 由于其能够以高精度呈现身体的内部结构,因此被称为医学。这 导致在美国CT成像的使用大幅增加。因此, 持续关注CT成像中的剂量减少。然而,证明有效的剂量减少是 挑战性根据定义,这些技术寻求保留诊断质量, 影响诊断性能。使用受试者工作特征(ROC)的临床阅片师研究 方法学是评价诊断性能效果的公认标准。但这些 研究是昂贵和耗时的,识别小的影响需要大量的 读者与案例这导致了美国剂量减少声明的“模型观察员”的发展 美国食品药品监督管理局(FDA)。目前,FDA至少有三项剂量减少声明使用了 模型观察者研究,以证实其使用迭代重建降低CT剂量的声明 算法 这个项目的基础是我们认识到这些模型的有效性相对较低, 考虑到人类视觉系统和被评估的图像的复杂性。我们提出了一个深入的表征人类观察员的反应,在CT剂量减少相关的任务。目的 这项研究的目的是开发和验证一个(或多个)观测器性能模型, CT剂量降低的图像重建评估。要使模型观察器在这一领域发挥作用, 必须接受作为一个合理的预测人类观察者的表现为一定范围内的相关 任务这激发了我们的总体方法,以及我们研究计划的许多细节。 我们的计划是收集一组初始的心理物理数据,使用这些数据来开发我们的模型, 然后从各种剂量的模拟中预测CT重建的性能。然后我们收集 这些图像上的心理物理数据,以量化预测的准确性,并将其与 其他型号。具体目标1涉及在具有噪声统计的任务中收集心理物理数据 类似于CT剂量评估。具体目标2旨在通过拟合来开发任务绩效模型 模型参数的几个候选模型的数据从目标1。具体目标3提出 在一组新的心理物理学数据中对观察者表现的前瞻性预测, 使用现代迭代方法重建。在项目期结束时,我们预计 更好地理解观察者如何执行困难的定位和区分任务, 噪声CT图像,以及这个过程如何受到与图像相关的剂量的影响。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative observer effects in 2D and 3D localization tasks.
Power Spectrum Analysis of Breast Parenchyma with Digital Breast Tomosynthesis Images in a Longitudinal Screening Cohort from Two Vendors.
  • DOI:
    10.1016/j.acra.2021.08.014
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Yang, Kai;Abbey, Craig K.;Chou, Shinn-Huey Shirley;Dontchos, Brian N.;Li, Xinhua;Lehman, Constance D.;Liu, Bob
  • 通讯作者:
    Liu, Bob
Performance Assessment of Texture Reproduction in High-Resolution CT.
高分辨率 CT 中纹理再现的性能评估。
Assessment of Boundary Discrimination Performance in a Printed Phantom.
印刷体模的边界辨别性能评估。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig Kendall Abbey其他文献

Craig Kendall Abbey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Craig Kendall Abbey', 18)}}的其他基金

Sequential Reading Effects in Digital Breast Tomosynthesis
数字乳腺断层合成中的顺序读取效果
  • 批准号:
    10629384
  • 财政年份:
    2020
  • 资助金额:
    $ 40.15万
  • 项目类别:
Sequential Reading Effects in Digital Breast Tomosynthesis
数字乳腺断层合成中的顺序读取效果
  • 批准号:
    10238778
  • 财政年份:
    2020
  • 资助金额:
    $ 40.15万
  • 项目类别:
Sequential Reading Effects in Digital Breast Tomosynthesis
数字乳腺断层合成中的顺序读取效果
  • 批准号:
    10410475
  • 财政年份:
    2020
  • 资助金额:
    $ 40.15万
  • 项目类别:
Utility-Based Assessment of Diagnostic Imaging Performance
基于效用的诊断成像性能评估
  • 批准号:
    8824406
  • 财政年份:
    2014
  • 资助金额:
    $ 40.15万
  • 项目类别:
Utility-Based Assessment of Diagnostic Imaging Performance
基于效用的诊断成像性能评估
  • 批准号:
    8935780
  • 财政年份:
    2014
  • 资助金额:
    $ 40.15万
  • 项目类别:
Quantitative Assessment of Murine Tumors with MicroPET.
使用 MicroPET 对小鼠肿瘤进行定量评估。
  • 批准号:
    6932211
  • 财政年份:
    2003
  • 资助金额:
    $ 40.15万
  • 项目类别:
Quantitative Assessment of Murine Tumors with MicroPET.
使用 MicroPET 对小鼠肿瘤进行定量评估。
  • 批准号:
    6677249
  • 财政年份:
    2003
  • 资助金额:
    $ 40.15万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 40.15万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了