Model-based credit assignment
基于模型的学分分配
基本信息
- 批准号:10083230
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-10 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllergic ReactionAnatomyAnimalsAnxietyAreaBasic ScienceBayesian ModelingBayesian learningBehaviorBehavioralBiological MarkersBrainBrain regionChildClamsClinicalCodeComplexCoupledDataDecision MakingDimensionsDiseaseElectroencephalographyEnvironmentEventFire - disastersFunctional Magnetic Resonance ImagingGoalsHumanHypersensitivityIndividualInvestigationKnowledgeLateralLearningLinkMathematicsMeasuresMental disordersMethodologyMethodsModelingNeurobiologyNeuronsNeurosciencesOutcomePatternPlayProcessPsychiatryPsychological reinforcementPsychologyReactionResearchRestaurantsRoleScallopScalp structureScientistService delivery modelShellfishSignal TransductionSocial DominanceSocial HierarchySpecific qualifier valueStimulusStructureSystemTaxonomyTestingTimeUpdateWeightbaseexperienceexperimental studyflexibilityfunctional magnetic resonance imaging/electroencephalographyinsightneural modelneuromechanismnovelpredictive modelingprogramsrelating to nervous systemshellfish hypersensitivitysoundtwo-dimensional
项目摘要
Abstract
How the brain forms, tunes, and uses predictive models that specify the causal links between stimuli in the
environment, our choices, and their outcomes is a fundamental question in Psychology and Neuroscience. A
great deal of progress has been made identifying the neural computations theorized to form and update
predictive models. This research has played a central role in the rise of computational psychiatry, but its
relevance to clinical disorders has been limited in part by the use of relatively simple learning/choice paradigms
that capture only a narrow subset of the structural complexity of real-world learning.
In order to make sound predictions in a complex world, the brain needs to attribute good and bad
outcomes to their most likely causes, a problem known as “credit assignment”. There is little understanding of
how outcomes are attributed to their most likely causes in structured real-world environments. Most real-world
learning occurs in complex and structured environments, such as hierarchical systems (e.g. seasonal events,
social hierarchies, contextual rules, etc.). Recent evidence suggests that humans can use an understanding of
the environment’s causal structure to attribute outcomes to their most likely causes (which I call “model-based
credit assignment)”, rather than simply attributing them to the most recently experienced stimuli and choices that
were made (which I call “model-free” credit assignment), as standard models have proposed.
The purpose of the present proposal is to develop the first neural model of model-based credit assignment.
We hypothesize that the brain reinstates the cause when a reinforcement outcome is experienced to associate
with the outcome. In other words, so that “fire-together/wire-together” plasticity mechanisms can link a choice
with an outcome, the choice representation and the outcome representation must both be active at the same
time even though the causal choice or event may have actually occurred some time beforehand.
To test this and other predictions, we will integrate mathematical descriptions of learning and decision
making with “representational” analysis methods that allow inferences to be made about the information
represented in brain areas, applied to fMRI and scalp EEG data. fMRI will reveal how neural learning signals
update neural representations of likely causes during learning, while EEG will reveal the timing of the
hypothesized reinstatement. These experiments will set the stage to apply the insights gained to investigate how
the brain attributes outcomes to more abstract “latent” causes in hierarchically structured environments prevalent
in the real world. The proposed project will thus move this general program of research strategy toward learning
tasks that better reflect the complexity and structure in many real-world learning/choice situations important for
both typical and atypical individuals.
摘要
大脑是如何形成、调整和使用预测模型的,这些模型指定了大脑中刺激之间的因果联系
环境、我们的选择以及它们的结果是心理学和神经科学的一个基本问题。一个
识别神经计算的理论形成和更新已经取得了很大的进展
预测性模型。这项研究在计算精神病学的兴起中发挥了核心作用,但它的
与临床疾病的相关性在一定程度上受到相对简单的学习/选择范例的使用的限制
这只捕捉到了现实世界学习结构复杂性的一小部分。
为了在复杂的世界中做出可靠的预测,大脑需要将好的和坏的属性归因于
结果是最有可能的原因,这就是所谓的“信用分配”问题。人们对……了解甚少
在结构化的真实世界环境中,结果如何归因于其最可能的原因。最真实的世界
学习发生在复杂和结构化的环境中,例如分层系统(例如,季节性事件,
社会等级、上下文规则等)。最近的证据表明,人类可以利用对
环境的因果结构,将结果归因于其最可能的原因(我称之为基于模型
信用分配)“,而不是简单地将它们归因于最近经历的刺激和选择
(我称之为“无模型”信用分配),正如标准模型所建议的那样。
本建议的目的是开发基于模型的信用分配的第一个神经模型。
我们假设,当经历强化结果时,大脑会恢复原因
结果如何。换句话说,这样“一起火/一根线”的可塑性机制可以将一种选择联系起来
对于结果,选择表示和结果表示必须同时处于活动状态
时间,即使因果选择或事件实际上可能发生在一段时间之前。
为了测试这一预测和其他预测,我们将整合学习和决策的数学描述
使用“代表性”分析方法,允许对信息进行推论
代表大脑区域,应用于功能磁共振成像和头皮脑电数据。功能磁共振成像将揭示神经学习信号如何
在学习过程中更新可能原因的神经表征,而脑电波将揭示
假想复职。这些实验将为应用所获得的见解来研究
大脑将结果归因于在普遍存在的分层结构环境中更抽象的“潜伏”原因
在真实的世界见面。因此,拟议的项目将把这一研究策略的一般方案推向学习
更好地反映许多现实世界学习/选择情景中的复杂性和结构的任务
既有典型的,也有非典型的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erie D Boorman其他文献
Erie D Boorman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erie D Boorman', 18)}}的其他基金
Cognitive maps for goal-directed decision making
用于目标导向决策的认知图
- 批准号:
10212037 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
Cognitive maps for goal-directed decision making
用于目标导向决策的认知图
- 批准号:
10608120 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
Cognitive maps for goal-directed decision making
用于目标导向决策的认知图
- 批准号:
10414966 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
相似海外基金
How activation of the reward system inhibits allergic reaction
奖励系统的激活如何抑制过敏反应
- 批准号:
22K08561 - 财政年份:2022
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
time-restricted feeding can change allergic reaction
限时喂养可改变过敏反应
- 批准号:
19K22636 - 财政年份:2019
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Inhibitory effect of allergic reaction by IL33 receptor ST2
IL33受体ST2对过敏反应的抑制作用
- 批准号:
26461494 - 财政年份:2014
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The effects of TSLP-responsive dendritic cells on the allergic reaction in the skin
TSLP反应性树突状细胞对皮肤过敏反应的影响
- 批准号:
25860369 - 财政年份:2013
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Role of zinc trensporter in allergic reaction
锌转运蛋白在过敏反应中的作用
- 批准号:
23590576 - 财政年份:2011
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of in vitro alternative examination for drug-induced photo-allergic reaction or drug-induced allergic reaction
药物光过敏反应或药物过敏反应体外替代检查的发展
- 批准号:
22590543 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effect of overexposure to estrogen in fetal period on immediate allergic reaction
胎儿期过度接触雌激素对速发型过敏反应的影响
- 批准号:
22790132 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Effect of Processing on Microbial Count & Allergic Reaction in Food & Pharma Products
处理对微生物计数的影响
- 批准号:
381166-2009 - 财政年份:2009
- 资助金额:
$ 38.5万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Effect of lipid peroxidation on allergic reaction
脂质过氧化对过敏反应的影响
- 批准号:
21580146 - 财政年份:2009
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Induction of ovalbumin-specific allergic reaction by ingestion of food additives including aluminum
摄入铝等食品添加剂可诱发卵清蛋白特异性过敏反应
- 批准号:
21500796 - 财政年份:2009
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)