Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
基本信息
- 批准号:10266220
- 负责人:
- 金额:$ 58.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-29 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAffectAfrica South of the SaharaAgeAnimalsAntibodiesAntibody ResponseAntiparasitic AgentsAreaBayesian NetworkBiologicalBiological AssayBloodCell physiologyChildChronicClinicClinicalCohort StudiesComplementComplexComputer ModelsDataDevelopmentDiseaseEducational workshopEvolutionExposure toFalciparum MalariaFeverGene Expression ProfilingGeneticGrowthHumanImmuneImmune responseImmune systemImmunityImmunologicsIndividualInfectionInflammatoryInflammatory ResponseInterventionLaboratoriesLearningMalariaMalaria VaccinesMeasurementModelingModernizationMorbidity - disease rateOutcomeParasitesParticipantPhenotypePlasmodium falciparumProcessPropertyRecurrenceResearchTimeUgandaVaccine DesignVaccinesValidationVisualizationacquired immunityadaptive immune responseage groupattenuationbasecohortdensityepidemiologic dataexperimental studyflexibilityinsightlongitudinal datasetmalaria infectionmortalitypathogenpublic repositoryrecurrent infectionresponseweb site
项目摘要
ABSTRACT
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is a novel coronavirus that has spread
rapidly across the globe and caused unprecedented global health and economic threats. Emerging evidence
suggests that SARS-CoV-2 infection is associated with an impaired Type I and Type III interferon response,
and that this reduced response may play a critical role in immunopathogenesis. Our collaboration has recently
begun a randomized clinical trial of a Type III interferon, pegylated-lambda interferon (Lambda) for treatment of
SARS-CoV-2 infected patients at Stanford University. In the parent study, 120 SARS-CoV-2 infected patients
(both symptomatic and asymptomatic) are being randomized to receive Lambda vs. placebo, with
assessments for viral shedding in oropharyngeal and nasal swabs, daily symptom screening for 28 days
following treatment, and peripheral blood collected at multiple timepoints, including 4, 7, and 10 months post-
infection. In this proposal, we will leverage samples collected from this trial, comprehensive immunologic
interrogation, and computational analysis to elucidate the dynamics of the host immune response to SARS-
CoV-2. In Aim 1, we will determine whether specific immune features, including endogenous IFN-λ production
and cytokine production in response to toll-like receptor (TLR) ligands, predict duration of viral shedding and/or
symptoms in SARS-CoV-2 infected patients. We will also evaluate differences in immune trajectories based on
the presence or absence of clinical symptoms, participant sex, and age. We will broadly profile immune
responses using parallel methodology to our U01, including transcriptional profiling, cellular phenotyping,
plasma cytokine levels, antibody profiling and functional assays, and build flexible computational models to
model interactions between different compartments of the immune system and to assess associations between
immune responses and virologic and clinical outcomes. In Aim 2, we will define the impact of Lambda on the
adaptive immune response, including SARS-CoV-2 specific cellular and humoral immunity. We hypothesize
that treatment with Lambda reduces time to seroconversion and is associated with improved immunologic
memory to Lambda, including higher titers and duration of neutralizing antibodies and frequencies of Th2-type
T follicular helper cells. To perform these studies, we will leverage our computational immunology U01
research team at Stanford and UCSF including experts in clinical trials and cellular immunity (Dr.
Jagannathan), antibody profiling and function (Drs. Greenhouse and Wang), infectious diseases epidemiology
and biostatistics (Dr. Rodriguez-Barraquer), and biomedical informatics and computational biology (Dr. Butte).
By improving our understanding of the host immune response to natural SARS-CoV2 infection, identifying
correlates of viral resolution, and analyzing the impact of a novel immunomodulatory drug on this immunity, our
results will provide insight into mechanisms that can be exploited in the design of vaccines and other
therapeutics.
摘要
严重急性呼吸综合征-冠状病毒-2(SARS-CoV-2)是一种新型冠状病毒,
迅速席卷地球仪,造成了前所未有的全球健康和经济威胁。新出现的证据
表明SARS-CoV-2感染与I型和III型干扰素应答受损相关,
并且这种降低的反应可能在免疫发病机制中起关键作用。我们的合作最近
开始了一项III型干扰素,聚乙二醇化λ干扰素(λ)治疗
斯坦福大学的SARS-CoV-2感染患者。在母研究中,120名SARS-CoV-2感染患者
(both有症状和无症状)随机接受Lambda与安慰剂,
评估口咽和鼻拭子中的病毒脱落,每日症状筛查,持续28天
在治疗后,在多个时间点收集外周血,包括治疗后4、7和10个月,
感染在这项提案中,我们将利用从这项试验中收集的样本,
询问,和计算分析,以阐明宿主对SARS的免疫反应的动力学-
二型冠状病毒在目标1中,我们将确定是否特异性免疫特征,包括内源性IFN-λ的产生,
和细胞因子的产生,预测病毒脱落的持续时间和/或
SARS-CoV-2感染者的症状。我们还将评估免疫轨迹的差异,
是否存在临床症状、参与者性别和年龄。我们将广泛地分析免疫
使用与我们的U 01平行的方法,包括转录谱,细胞表型,
血浆细胞因子水平,抗体分析和功能测定,并建立灵活的计算模型,
建立免疫系统不同区室之间的相互作用模型,
免疫应答以及病毒学和临床结果。在目标2中,我们将定义Lambda对
适应性免疫反应,包括SARS-CoV-2特异性细胞和体液免疫。我们假设
用Lambda治疗可以减少血清转换的时间,并与改善免疫学相关。
对Lambda的记忆,包括中和抗体的更高滴度和持续时间以及Th 2型的频率
T滤泡辅助细胞。为了进行这些研究,我们将利用我们的计算免疫学U 01
研究小组在斯坦福大学和加州大学旧金山分校,包括专家在临床试验和细胞免疫(博士。
Jagannathan),抗体谱和功能(Greenhouse和Wang博士),传染病流行病学
生物统计学(Rodriguez-Barraquer博士),生物医学信息学和计算生物学(Butte博士)。
通过提高我们对自然SARS-CoV 2感染的宿主免疫应答的理解,
相关的病毒分辨率,并分析一种新型免疫调节药物对这种免疫力的影响,我们
结果将提供深入了解机制,可以利用在疫苗的设计和其他
治疗学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ATUL J BUTTE其他文献
ATUL J BUTTE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ATUL J BUTTE', 18)}}的其他基金
Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
- 批准号:
10599139 - 财政年份:2020
- 资助金额:
$ 58.33万 - 项目类别:
Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
- 批准号:
10168916 - 财政年份:2020
- 资助金额:
$ 58.33万 - 项目类别:
Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
- 批准号:
10377989 - 财政年份:2020
- 资助金额:
$ 58.33万 - 项目类别:
Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
- 批准号:
10474820 - 财政年份:2020
- 资助金额:
$ 58.33万 - 项目类别:
Integrative Analysis of Genomic, Epigenomic and Phenotypic Data for Disease Stratification of Endometriosis
子宫内膜异位症疾病分层的基因组、表观基因组和表型数据的综合分析
- 批准号:
9356327 - 财政年份:2016
- 资助金额:
$ 58.33万 - 项目类别:
Integrative Analysis of Genomic, Epigenomic and Phenotypic Data for Disease Stratification of Endometriosis
子宫内膜异位症疾病分层的基因组、表观基因组和表型数据的综合分析
- 批准号:
9192984 - 财政年份:2016
- 资助金额:
$ 58.33万 - 项目类别:
Stanford and Northrop Grumman proposal for the Oncology Models Forum
斯坦福大学和诺斯罗普·格鲁曼公司关于肿瘤模型论坛的提案
- 批准号:
9762589 - 财政年份:2015
- 资助金额:
$ 58.33万 - 项目类别:
Stanford and Northrop Grumman proposal for the Oncology Models Forum
斯坦福大学和诺斯罗普·格鲁曼公司关于肿瘤模型论坛的提案
- 批准号:
9320530 - 财政年份:2015
- 资助金额:
$ 58.33万 - 项目类别:
Biorepository of Human iPSCs for Studying Dilated and Hypertrophic Cardiomyopathy
用于研究扩张型和肥厚型心肌病的人类 iPSC 生物储存库
- 批准号:
8838250 - 财政年份:2014
- 资助金额:
$ 58.33万 - 项目类别:
Biorepository of Human iPSCs for Studying Dilated and Hypertrophic Cardiomyopathy
用于研究扩张型和肥厚型心肌病的人类 iPSC 生物储存库
- 批准号:
8608017 - 财政年份:2014
- 资助金额:
$ 58.33万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 58.33万 - 项目类别:
Research Grant