Computational models of naturally acquired immunity to falciparum malaria

恶性疟疾自然获得性免疫力的计算模型

基本信息

  • 批准号:
    10599139
  • 负责人:
  • 金额:
    $ 118.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Immunity to malaria is complex, involving a fine interplay between immune compartments over time. Most prior efforts to understand the development of immunity have been limited to a narrow set of measurements or reductionist animal or human challenge models that fail to capture the complexity of repeated infection in naturally exposed individuals. We propose to comprehensively evaluate and model the innate and adaptive immune response to repeated P. falciparum (Pf) infections over time. This project takes advantage of a unique malaria cohort study in Uganda, with participants seen in our clinic monthly and for all illnesses, allowing us to capture both symptomatic and asymptomatic infections. By leveraging our well-characterized cohort, detailed immunological characterization of host responses, and state-of-the-art computational models of immunity, we will 1) Comprehensively characterize the immune response to symptomatic and asymptomatic P. falciparum infections. We hypothesize that symptomatic – but not asymptomatic – infections will be characterized by an attenuation of the innate and adaptive inflammatory response. We will profile the innate and adaptive immune response to symptomatic and asymptomatic infections in children at multiple time points in the weeks following Pf infection. Data from transcriptional profiling, deep cellular phenotyping, antibody profiling, and stimulation assays will be used to build flexible computational models, capturing interactions between different compartments of the immune system and the trajectory of the immune response after a single infection. 2) Determine how the immune state evolves in response to recurrent P. falciparum infections. We hypothesize that recurrent infection will result in a shift of the immune state from one biased towards dynamic, inflammatory immune responses to one characterized by a more stable, regulatory state and the acquisition of functional antibodies. We will model the evolution of key immunological parameters identified in Aim 1, along with assays of anti-parasitic humoral and cellular function, over years of repeated infection and across ages by generating longitudinal data over a period of 2 years. This aim complements Aim 1 in providing important information to define emergent properties of the immune response from cumulative infections over longer time scales, spanning the period of immune acquisition. 3) Identify key aspects of the immune state leading to anti-parasite and anti-disease immunity to P. falciparum infection. We hypothesize that functional antibody responses will be most strongly associated with anti-parasite immunity, and that attenuation of innate responses will be most strongly associated with anti-disease immunity. Guided by findings from Aims 1 and 2, we will develop computational models to identify the key determinants of clinical immune phenotypes, obtained by evaluating the clinical outcomes of infection over the subsequent year. All models will be validated and iteratively refined using data from independent individuals, external data and laboratory-based experiments. Data and models will be made available and findable through appropriate public repositories.
项目总结/摘要 对疟疾的免疫是复杂的,随着时间的推移,涉及免疫区室之间的精细相互作用。大多数现有 了解免疫力发展的努力仅限于一组狭窄的测量方法, 简化的动物或人类挑战模型,未能捕捉重复感染的复杂性, 自然暴露的人。我们建议全面评估和建模的先天和适应性 随着时间的推移,对恶性疟原虫(Pf)反复感染的免疫应答。这个项目利用了一个独特的 乌干达的疟疾队列研究,参与者每月在我们的诊所就诊,所有疾病,使我们能够 捕获有症状和无症状感染者。通过利用我们的特征鲜明的队列, 宿主反应的免疫学表征和最先进的免疫计算模型,我们 1)全面表征对有症状和无症状P. 恶性疟原虫感染我们假设,有症状的-而不是无症状的-感染将是 其特征在于先天性和适应性炎症反应的减弱。我们将分析先天的 多个时间点儿童对有症状和无症状感染者的适应性免疫应答 在感染Pf后的几周内。数据来自转录谱分析、深层细胞表型分析、抗体 分析和刺激分析将用于建立灵活的计算模型,捕获相互作用 免疫系统的不同部分之间的关系以及免疫反应的轨迹, 单一感染2)确定免疫状态如何演变以应对复发性恶性疟原虫 感染.我们假设,反复感染将导致免疫状态从一个偏见的转变, 向动态的炎症免疫反应转变,以更稳定的调节状态为特征, 获得功能性抗体。我们将对确定的关键免疫学参数的演变进行建模 在目标1中,沿着抗寄生虫体液和细胞功能的测定,多年的重复感染和 通过生成2年期间的纵向数据,这一目标补充了目标1, 重要的信息,以确定从累积感染超过 更长的时间尺度,跨越免疫获得的时期。3)确定免疫状态的关键方面 导致对恶性疟原虫感染的抗寄生虫和抗病免疫。我们假设 功能性抗体应答将与抗寄生虫免疫最密切相关, 先天性反应的最强相关的是抗疾病免疫。以目标的发现为指导 1和2,我们将开发计算模型,以确定临床免疫表型的关键决定因素, 通过评估随后一年的感染临床结果获得。所有型号都将得到确认 并使用来自独立个体的数据、外部数据和基于实验室的 实验数据和模型将通过适当的公共储存库提供和查找。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ATUL J BUTTE其他文献

ATUL J BUTTE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ATUL J BUTTE', 18)}}的其他基金

Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
  • 批准号:
    10266220
  • 财政年份:
    2020
  • 资助金额:
    $ 118.33万
  • 项目类别:
Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
  • 批准号:
    10168916
  • 财政年份:
    2020
  • 资助金额:
    $ 118.33万
  • 项目类别:
Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
  • 批准号:
    10377989
  • 财政年份:
    2020
  • 资助金额:
    $ 118.33万
  • 项目类别:
Computational models of naturally acquired immunity to falciparum malaria
恶性疟疾自然获得性免疫力的计算模型
  • 批准号:
    10474820
  • 财政年份:
    2020
  • 资助金额:
    $ 118.33万
  • 项目类别:
Integrative Analysis of Genomic, Epigenomic and Phenotypic Data for Disease Stratification of Endometriosis
子宫内膜异位症疾病分层的基因组、表观基因组和表型数据的综合分析
  • 批准号:
    9356327
  • 财政年份:
    2016
  • 资助金额:
    $ 118.33万
  • 项目类别:
Integrative Analysis of Genomic, Epigenomic and Phenotypic Data for Disease Stratification of Endometriosis
子宫内膜异位症疾病分层的基因组、表观基因组和表型数据的综合分析
  • 批准号:
    9192984
  • 财政年份:
    2016
  • 资助金额:
    $ 118.33万
  • 项目类别:
Stanford and Northrop Grumman proposal for the Oncology Models Forum
斯坦福大学和诺斯罗普·格鲁曼公司关于肿瘤模型论坛的提案
  • 批准号:
    9762589
  • 财政年份:
    2015
  • 资助金额:
    $ 118.33万
  • 项目类别:
Stanford and Northrop Grumman proposal for the Oncology Models Forum
斯坦福大学和诺斯罗普·格鲁曼公司关于肿瘤模型论坛的提案
  • 批准号:
    9320530
  • 财政年份:
    2015
  • 资助金额:
    $ 118.33万
  • 项目类别:
Biorepository of Human iPSCs for Studying Dilated and Hypertrophic Cardiomyopathy
用于研究扩张型和肥厚型心肌病的人类 iPSC 生物储存库
  • 批准号:
    8838250
  • 财政年份:
    2014
  • 资助金额:
    $ 118.33万
  • 项目类别:
Biorepository of Human iPSCs for Studying Dilated and Hypertrophic Cardiomyopathy
用于研究扩张型和肥厚型心肌病的人类 iPSC 生物储存库
  • 批准号:
    8608017
  • 财政年份:
    2014
  • 资助金额:
    $ 118.33万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 118.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了