Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity

用于时间、空间和时空动态功能连接的数据驱动解决方案

基本信息

  • 批准号:
    10559654
  • 负责人:
  • 金额:
    $ 59.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-19 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Existing approaches to estimate and characterize whole brain time-varying connectivity from fMRI data have shown considerable promise, with exponential growth in research in this field. We and others have developed a powerful set of tools that are now in wide use in the community. However, the impact of mental illness on brain connectivity is complex, and as we show, limitations in existing methods often result in missing important features associated with brain disorders (e.g. transient fractionation of the spatial structure of brain networks). Some of these important limitations include 1) the most widely-used approaches often require a number of prior and limiting assumptions that are not well studied, 2) methods often assume linear relationships either within or between networks over time, and 3) methods assume spatially fixed nodes and ignore the possibility of spatially fluid evolution of networks over time. We propose a novel family of models that builds on the well-structured framework of joint blind source separation to capture a more complete characterization of (potentially nonlinear) spatio-temporal dynamics while providing a way to relax other limiting assumptions. Our models will also produce a rich set of metrics to characterize the available dynamics and enable in depth comparison with currently avail- able models including those that are model based. We will extensively validate our approaches in a variety of ways including simulations and evaluation of rigor and robustness in large normative data sets. Finally, we will apply the developed tools to study the important area of dynamic properties in mental illnesses including schiz- ophrenia, bipolar disorder, and the autism spectrum. There is considerable evidence of disruption of dynamics in all three disorders, and as we show the use of static (or even exiting dynamic) approaches can miss important information about brain related differences associated with each. We will provide open source tools and release data throughout the duration of the project via a web portal and the NITRC repository, hence enabling other investigators to use our approaches and compare their own methods with our own. Our tools have wide appli- cation to the study of the healthy brain as well as many other diseases such as Alzheimer's disease and attention deficit hyperactivity disorder. 38
项目总结/摘要 从fMRI数据估计和表征全脑时变连通性的现有方法 显示出相当大的前景,在这一领域的研究呈指数增长。我们和其他人开发了一种 一套强大的工具,现在在社区中广泛使用。然而,精神疾病对大脑的影响 连通性是复杂的,正如我们所展示的,现有方法的局限性往往导致重要特征的缺失 与脑部疾病相关(例如,大脑网络空间结构的短暂分离)。一些 这些重要的限制包括:1)最广泛使用的方法通常需要许多先验知识, 限制性假设没有得到很好的研究,2)方法通常假设线性关系,或者 3)方法假设空间上固定的节点,忽略空间上的可能性, 随着时间的推移,网络的流体演化。我们提出了一个新的家庭的模型,建立在良好的结构, 联合盲源分离的框架,以捕获(潜在非线性)的更完整表征 时空动态,同时提供一种放松其他限制性假设的方法。我们的模特还将制作 一组丰富的指标来表征可用的动态,并能够与当前可用的进行深入比较, 有能力的模型,包括那些基于模型的。我们将广泛验证我们的方法在各种 方法,包括模拟和大型规范数据集的严谨性和鲁棒性的评估。最后我们将 应用开发的工具来研究精神疾病,包括精神分裂症的动态特性的重要领域, 抑郁症,躁郁症,和自闭症谱系。有相当多的证据表明, 在所有这三种疾病中,正如我们所展示的那样,使用静态(甚至是现有的动态)方法可能会错过重要的 关于大脑相关差异的信息。我们将提供开源工具并发布 在整个项目期间,通过门户网站和NITRC存储库收集数据,从而使其他 研究人员使用我们的方法,并将他们自己的方法与我们的方法进行比较。我们的工具有广泛的应用- 阳离子的研究健康的大脑以及许多其他疾病,如阿尔茨海默氏症和注意力 缺陷多动症 38

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TULAY ADALI其他文献

TULAY ADALI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TULAY ADALI', 18)}}的其他基金

Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
  • 批准号:
    10289991
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
  • 批准号:
    10156006
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
  • 批准号:
    10375496
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
  • 批准号:
    10633189
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
  • 批准号:
    10468956
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
  • 批准号:
    9889183
  • 财政年份:
    2019
  • 资助金额:
    $ 59.5万
  • 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
  • 批准号:
    10112311
  • 财政年份:
    2019
  • 资助金额:
    $ 59.5万
  • 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
  • 批准号:
    10559628
  • 财政年份:
    2019
  • 资助金额:
    $ 59.5万
  • 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
  • 批准号:
    10359205
  • 财政年份:
    2019
  • 资助金额:
    $ 59.5万
  • 项目类别:
Male/Female differences in psychosis and mood disorders:Dynamic imaging-genomic models for characterizing and predicting psychosis and mood d
精神病和情绪障碍的男性/女性差异:用于表征和预测精神病和情绪障碍的动态成像基因组模型
  • 批准号:
    10093861
  • 财政年份:
    2019
  • 资助金额:
    $ 59.5万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了