Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
基本信息
- 批准号:10559628
- 负责人:
- 金额:$ 67.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-25 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBehaviorBehavioralBenchmarkingBiologicalBiological MarkersBipolar DisorderBrainBrain imagingBrain regionCategoriesClassificationClinicalCommunitiesComplexConsensusDataData AggregationData SetDependenceDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDimensionsDiseaseEnvironmental Risk FactorEvaluationExhibitsFunctional Magnetic Resonance ImagingFutureGenesGeneticGenetic RiskGenomicsGoalsGroupingImageIndividualJointsLinkMajor Depressive DisorderMapsMental disordersMethodsModelingMood DisordersMoodsNoisePathway interactionsPatientsPatternPlayPropertyPsychosesResearch PersonnelRoleSamplingSchizoaffective DisordersSchizophreniaSignal TransductionSingle Nucleotide PolymorphismSourceStructureSubgroupSymptomsSyndromeTimeUnipolar DepressionWorkbipolar patientsblindconnectomedata anonymizationdata fusiondata reductiondata repositorydeep learningdiagnostic strategydisease classificationflexibilitygenomic datagenomic locusindependent component analysismultidimensional datamultimodal datamultimodalityneurobehavioralnovelprofiles in patientspsychiatric genomicspsychotic symptomsstatisticstooluser friendly software
项目摘要
Project Summary/Abstract
Disorders of mood and psychosis such as schizophrenia, bipolar disorder, and unipolar depression are
incredibly complex, influenced by both genetic and environmental factors, and the clinical characterizations are
primarily based on symptoms rather than biological information. Current diagnostic approaches are based on
symptoms, which overlap extensively in some cases, and there is growing consensus that we should approach
mental illness as a continuum, rather than as a categorical entity. Since both genetic and environmental factors
play a large role in mental illness, the combination of brain imaging and genomic data are poised to play an
important role is clarifying our understanding of mental illness. However, both imaging and genomic data are
high dimensional and include complex relationships that are poorly understood. To characterize the available
information, we are in need of approaches that can deal with high-dimensional data exhibiting interactions at
multiple levels (i.e., data fusion), while providing interpretable solutions (i.e., a focus on brain and genomic
networks). An additional challenge exists because the available data has mixed temporal dimensionality, e.g., single
nucleotide polymorphisms (SNPs) do not change over time, brain structure changes slowly over time, while fMRI
changes rapidly over time. To address these challenges, we introduce a new unified framework called flexible
subspace analysis (FSA) that can automatically identify subspaces (groupings of unimodal or multimodal
components) in joint multimodal data. Our approach leverages the interpretability of source separation approaches
and can include additional flexibility by allowing for a combination of shallow and ‘deep’ subspaces, thus
leveraging the power of deep learning. We will apply the developed models to a large (N>60,000) dataset of
individuals along the mood and psychosis spectrum to evaluate the important question of disease categorization. We
will compute fully cross-validated genomic-neuro-behavioral profiles of individuals including a comparison of the
predictive accuracy of 1) standard categories from the diagnostic and statistical manual of mental disorders
(DSM), 2) data-driven subgroups, and 3) dimensional relationships. We will also evaluate the single subject
predictive power of these profiles in independent data to maximize generalization. All methods and results will
be shared with the community. The combination of advanced algorithmic approach plus the large N data
promises to advance our understanding of the nosology of mood and psychosis disorders in addition to providing new
tools that can be widely applied to other studies of complex disease.
项目概要/摘要
情绪障碍和精神病,如精神分裂症、双相情感障碍和单相抑郁症
极其复杂,受到遗传和环境因素的影响,临床特征是
主要基于症状而不是生物信息。 Current diagnostic approaches are based on
症状,在某些情况下广泛重叠,并且越来越多的共识认为我们应该解决
精神疾病是一个连续体,而不是一个绝对的实体。 Since both genetic and environmental factors
在精神疾病中发挥着重要作用,脑成像和基因组数据的结合有望发挥作用
重要的作用是澄清我们对精神疾病的理解。 However, both imaging and genomic data are
高维度并包含人们知之甚少的复杂关系。 To characterize the available
信息,我们需要能够处理表现出交互作用的高维数据的方法
多个层次(即数据融合),同时提供可解释的解决方案(即关注大脑和基因组)
网络)。存在额外的挑战,因为可用数据具有混合的时间维度,例如单个数据
核苷酸多态性 (SNP) 不会随时间变化,大脑结构随时间缓慢变化,而功能磁共振成像 (fMRI)
changes rapidly over time.为了应对这些挑战,我们引入了一个新的统一框架,称为“灵活”
子空间分析 (FSA),可以自动识别子空间(单峰或多峰分组)
components) in joint multimodal data.我们的方法利用了源分离方法的可解释性
并且可以通过允许浅层和“深层”子空间的组合来包含额外的灵活性,因此
leveraging the power of deep learning.我们将把开发的模型应用到一个大型(N>60,000)数据集
沿着情绪和精神病谱的个体来评估疾病分类的重要问题。我们
将计算个体的完全交叉验证的基因组神经行为特征,包括比较
1) 《精神障碍诊断和统计手册》中标准类别的预测准确性
(DSM),2) 数据驱动的子组,以及 3) 维度关系。 We will also evaluate the single subject
这些剖面在独立数据中的预测能力可以最大限度地提高泛化能力。 All methods and results will
be shared with the community.先进算法方法与大N数据的结合
除了提供新的知识之外,有望增进我们对情绪和精神病疾病的疾病分类学的理解
可广泛应用于复杂疾病的其他研究的工具。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Objective sleep measures in chronic fatigue syndrome patients: A systematic review and meta-analysis.
慢性疲劳综合征患者的客观睡眠测量:系统评价和荟萃分析。
- DOI:10.1016/j.smrv.2023.101771
- 发表时间:2023
- 期刊:
- 影响因子:10.5
- 作者:Mohamed,AbdallaZ;Andersen,Thu;Radovic,Sanja;DelFante,Peter;Kwiatek,Richard;Calhoun,Vince;Bhuta,Sandeep;Hermens,DanielF;Lagopoulos,Jim;Shan,ZackY
- 通讯作者:Shan,ZackY
Individualized spatial network predictions using Siamese convolutional neural networks: A resting-state fMRI study of over 11,000 unaffected individuals.
- DOI:10.1371/journal.pone.0249502
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Hassanzadeh R;Silva RF;Abrol A;Salman M;Bonkhoff A;Du Y;Fu Z;DeRamus T;Damaraju E;Baker B;Calhoun VD
- 通讯作者:Calhoun VD
Determining four confounding factors in individual cognitive traits prediction with functional connectivity: an exploratory study
确定具有功能连接的个体认知特征预测中的四个混杂因素:一项探索性研究
- DOI:10.1093/cercor/bhac189
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Feng, Pujie;Jiang, Rongtao;Wei, Lijiang;Calhoun, Vince D;Jing, Bin;Li, Haiyun;Sui, Jing
- 通讯作者:Sui, Jing
Intrinsic neural network dynamics in catatonia.
- DOI:10.1002/hbm.25671
- 发表时间:2021-12-15
- 期刊:
- 影响因子:4.8
- 作者:Sambataro F;Hirjak D;Fritze S;Kubera KM;Northoff G;Calhoun VD;Meyer-Lindenberg A;Wolf RC
- 通讯作者:Wolf RC
Structure/function interrelationships and illness insight in patients with schizophrenia: a multimodal MRI data fusion study.
- DOI:10.1007/s00406-023-01566-1
- 发表时间:2023-12
- 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TULAY ADALI其他文献
TULAY ADALI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TULAY ADALI', 18)}}的其他基金
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10289991 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10156006 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10559654 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10375496 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10633189 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10468956 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
9889183 - 财政年份:2019
- 资助金额:
$ 67.57万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10112311 - 财政年份:2019
- 资助金额:
$ 67.57万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10359205 - 财政年份:2019
- 资助金额:
$ 67.57万 - 项目类别:
Male/Female differences in psychosis and mood disorders:Dynamic imaging-genomic models for characterizing and predicting psychosis and mood d
精神病和情绪障碍的男性/女性差异:用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10093861 - 财政年份:2019
- 资助金额:
$ 67.57万 - 项目类别:
相似海外基金
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
- 批准号:
10263607 - 财政年份:2021
- 资助金额:
$ 67.57万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
10001503 - 财政年份:2018
- 资助金额:
$ 67.57万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 67.57万 - 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 67.57万 - 项目类别:
Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
- 批准号:
1548234 - 财政年份:2015
- 资助金额:
$ 67.57万 - 项目类别:
Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1559588 - 财政年份:2015
- 资助金额:
$ 67.57万 - 项目类别:
Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1254117 - 财政年份:2013
- 资助金额:
$ 67.57万 - 项目类别:
Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2012
- 资助金额:
$ 67.57万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2011
- 资助金额:
$ 67.57万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2010
- 资助金额:
$ 67.57万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




