Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
基本信息
- 批准号:10359205
- 负责人:
- 金额:$ 70.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-25 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsBehaviorBehavioralBenchmarkingBiologicalBiological MarkersBipolar DisorderBrainBrain imagingBrain regionCategoriesClinicalCommunitiesComplexConsensusDataData SetDependenceDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDimensionsDiseaseEnvironmental Risk FactorEvaluationExhibitsFunctional Magnetic Resonance ImagingFutureGenesGeneticGenetic RiskGenomicsGoalsGroupingImageIndividualJointsLeadLinkMajor Depressive DisorderMapsMental disordersMethodsModelingMood DisordersMoodsNoisePathway interactionsPatientsPatternPlayPropertyPsychosesResearch PersonnelRoleSamplingSchizoaffective DisordersSchizophreniaSignal TransductionSingle Nucleotide PolymorphismSourceStructureSubgroupSupervisionSymptomsSyndromeTimeUnipolar DepressionWorkbasebipolar patientsblindconnectomedata anonymizationdata fusiondata repositorydeep learningdiagnostic strategydisease classificationflexibilitygenomic datagenomic locusindependent component analysismultidimensional datamultimodal datamultimodalityneurobehavioralnovelprofiles in patientspsychiatric genomicspsychotic symptomsstatisticstooluser friendly software
项目摘要
Project Summary/Abstract
Disorders of mood and psychosis such as schizophrenia, bipolar disorder, and unipolar depression are
incredibly complex, influenced by both genetic and environmental factors, and the clinical characterizations are
primarily based on symptoms rather than biological information. Current diagnostic approaches are based on
symptoms, which overlap extensively in some cases, and there is growing consensus that we should approach
mental illness as a continuum, rather than as a categorical entity. Since both genetic and environmental factors
play a large role in mental illness, the combination of brain imaging and genomic data are poised to play an
important role is clarifying our understanding of mental illness. However, both imaging and genomic data are
high dimensional and include complex relationships that are poorly understood. To characterize the available
information, we are in need of approaches that can deal with high-dimensional data exhibiting interactions at
multiple levels (i.e., data fusion), while providing interpretable solutions (i.e., a focus on brain and genomic
networks). An additional challenge exists because the available data has mixed temporal dimensionality, e.g., single
nucleotide polymorphisms (SNPs) do not change over time, brain structure changes slowly over time, while fMRI
changes rapidly over time. To address these challenges, we introduce a new unified framework called flexible
subspace analysis (FSA) that can automatically identify subspaces (groupings of unimodal or multimodal
components) in joint multimodal data. Our approach leverages the interpretability of source separation approaches
and can include additional flexibility by allowing for a combination of shallow and ‘deep’ subspaces, thus
leveraging the power of deep learning. We will apply the developed models to a large (N>60,000) dataset of
individuals along the mood and psychosis spectrum to evaluate the important question of disease categorization. We
will compute fully cross-validated genomic-neuro-behavioral profiles of individuals including a comparison of the
predictive accuracy of 1) standard categories from the diagnostic and statistical manual of mental disorders
(DSM), 2) data-driven subgroups, and 3) dimensional relationships. We will also evaluate the single subject
predictive power of these profiles in independent data to maximize generalization. All methods and results will
be shared with the community. The combination of advanced algorithmic approach plus the large N data
promises to advance our understanding of the nosology of mood and psychosis disorders in addition to providing new
tools that can be widely applied to other studies of complex disease.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TULAY ADALI其他文献
TULAY ADALI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TULAY ADALI', 18)}}的其他基金
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10289991 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10156006 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10559654 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10375496 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10633189 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10468956 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
9889183 - 财政年份:2019
- 资助金额:
$ 70.53万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10112311 - 财政年份:2019
- 资助金额:
$ 70.53万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10559628 - 财政年份:2019
- 资助金额:
$ 70.53万 - 项目类别:
Male/Female differences in psychosis and mood disorders:Dynamic imaging-genomic models for characterizing and predicting psychosis and mood d
精神病和情绪障碍的男性/女性差异:用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10093861 - 财政年份:2019
- 资助金额:
$ 70.53万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 70.53万 - 项目类别:
Research Grant