Male/Female differences in psychosis and mood disorders:Dynamic imaging-genomic models for characterizing and predicting psychosis and mood d
精神病和情绪障碍的男性/女性差异:用于表征和预测精神病和情绪障碍的动态成像基因组模型
基本信息
- 批准号:10093861
- 负责人:
- 金额:$ 15.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-25 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsBiologicalBiological MarkersBipolar DisorderBrainBrain imagingCategoriesClinicalCognitiveCommunitiesComplexConsensusDataData SetDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDiffusion Magnetic Resonance ImagingDimensionsDiseaseEnvironmental Risk FactorExhibitsFemaleFunctional Magnetic Resonance ImagingGeneticGenomicsGoalsGroupingImageIndividualJointsMeasuresMental disordersMethodsModelingMood DisordersMoodsPlayPsychotic DisordersRoleSchizophreniaServicesSingle Nucleotide PolymorphismSourceStructureSubgroupSymptomsTimeUnipolar Depressionbasedata fusiondisease classificationflexibilitygenomic datamalemeetingsmultidimensional datamultimodal datamultimodalityneurobehavioralnovelsextask analysistool
项目摘要
Disorders of mood and psychosis such as schizophrenia, bipolar disorder, and unipolar
depression are incredibly complex, influenced by both genetic and environmental factors, and
the clinical characterizations are primarily based on symptoms rather than biological
information. Current diagnostic approaches are based on symptoms, which overlap extensively
in some cases, and there is growing consensus that we should approach mental illness as a
continuum, rather than as a categorical entity. Since both genetic and environmental factors
play a large role in mental illness, the combination of brain imaging and genomic data are
poised to play an important role in clarifying our understanding of mental illness. However, both
imaging and genomic data are high dimensional and include complex relationships that are
poorly understood. To characterize the available information, we are in need of approaches that
can deal with high-dimensional data exhibiting interactions at multiple levels (i.e., data fusion),
while providing interpretable solutions (i.e., a focus on brain and genomic networks). An
additional challenge exists because the available data has mixed temporal dimensionality, e.g.,
single nucleotide polymorphisms (SNPs) do not change over time, brain structure changes
slowly over time, while fMRI changes rapidly over time. To address these challenges, we
introduce a new unified framework called flexible subspace analysis (FSA) that subsumes
existing models while providing important extensions. FSA can automatically identify subspaces
(groupings of unimodal or multimodal components) in joint multimodal data. Our approach
leverages the interpretability of source separation approaches and can include additional
flexibility by allowing for a combination of both linear and nonlinear (shallow and deep)
subspaces. We will apply the developed models to a large (N~80,000) dataset including
individuals along the mood and psychosis spectrum to evaluate the important question of
disease categorization. We will compute fully cross-validated genomic-neuro-behavioral profiles
of individuals including a comparison of the predictive accuracy of 1) standard categories from
the diagnostic and statistical manual of mental disorders (DSM), 2) data-driven subgroups, and
3) dimensional relationships. We will also evaluate the single subject predictive power of these
profiles in independent data to maximize generalization. All methods and results will be shared
with the community. The combination of advanced algorithmic approach plus the large N data
promises to advance our understanding of the nosology of mood and psychosis disorders in
addition to providing new tools that can be widely applied to other studies of complex disease.
情绪障碍和精神障碍,如精神分裂症、双相情感障碍和单相情感障碍
抑郁症非常复杂,受遗传和环境因素的影响,而且
临床特征主要是基于症状而不是生物学上的。
信息。目前的诊断方法是基于症状的,这些症状有很大的重叠
在某些情况下,越来越多的人达成共识,认为我们应该将精神疾病视为一种
连续体,而不是作为一个绝对实体。因为遗传和环境因素都有
在精神疾病中起着很大的作用,大脑成像和基因组数据的结合是
准备在澄清我们对精神疾病的理解方面发挥重要作用。然而,两者
成像和基因组数据是高维的,包括复杂的关系,
人们对此知之甚少。为了描述可用的信息,我们需要的方法是
可以处理表现出多个层次上的交互的高维数据(即,数据融合),
同时提供可解释的解决方案(即,关注大脑和基因组网络)。一个
由于可用数据具有混合的时间维度,例如,
单核苷酸多态(SNPs)不会随着时间的推移而改变,大脑结构会改变
随着时间的推移,fMRI变化很慢,而fMRI随着时间的推移变化很快。为了应对这些挑战,我们
引入一种称为柔性子空间分析(FSA)的新统一框架,该框架包含
现有的模型,同时提供重要的扩展。FSA可以自动识别子空间
(单峰或多峰分量分组)联合多峰数据。我们的方法
利用源分离方法的可解释性,并可包括其他
通过允许线性和非线性(浅和深)的组合来实现灵活性
子空间。我们将开发的模型应用于一个大型(N~80,000)数据集,包括
沿着心境和精神病谱来评价个体的重要问题
疾病分类。我们将计算完全交叉验证的基因组-神经行为图谱
包括1)标准类别的预测准确性的比较
精神障碍诊断和统计手册(DSM),2)数据驱动的亚组,以及
3)维度关系。我们还将评估这些指标的单项预测能力。
独立数据中的配置文件,以最大限度地提高概括性。所有方法和结果都将共享
和社区在一起。先进的算法方法与大N数据相结合
承诺促进我们对情绪和精神障碍的病因学的理解
此外,还提供了可广泛应用于其他复杂疾病研究的新工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TULAY ADALI其他文献
TULAY ADALI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TULAY ADALI', 18)}}的其他基金
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10289991 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10156006 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10559654 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10375496 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10633189 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10468956 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
9889183 - 财政年份:2019
- 资助金额:
$ 15.55万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10112311 - 财政年份:2019
- 资助金额:
$ 15.55万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10559628 - 财政年份:2019
- 资助金额:
$ 15.55万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10359205 - 财政年份:2019
- 资助金额:
$ 15.55万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 15.55万 - 项目类别:
Research Grant