Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
基本信息
- 批准号:10289991
- 负责人:
- 金额:$ 77.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeAgingAlgorithmsAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerAmyloidBaltimoreBiological MarkersBrainBrain DiseasesCognitiveCommunitiesComplexCouplingDataData DiscoveryData SetDementiaDetectionDevelopmentDiseaseDisease ProgressionDocumentationEarly DiagnosisEarly InterventionEnsureEvaluationExhibitsFamilyFrequenciesFunctional Magnetic Resonance ImagingFutureGoalsGrowthHeterogeneityImpaired cognitionIndividualIntuitionJointsLongitudinal StudiesMeasuresMethodsModelingNatureOnset of illnessPatternPhasePositron-Emission TomographyPrognosisPythonsResearch PersonnelRestSamplingScanningSleepSourceSpecificityStructureStudy modelsSubgroupTestingTimeUniversitiesValidationWorkbasebiomarker developmentblindflexibilityfunctional magnetic resonance imaging/electroencephalographyimprovedinnovationinterestlarge datasetsnovelnovel markeropen sourceopen source toolpersonalized predictionspre-clinicalprodromal Alzheimer&aposs diseaserepositorysimulationspatiotemporaltau Proteinstooluser-friendlyweb portal
项目摘要
Project Summary/Abstract
The development of biomarkers for identifying preclinical or prodromal Alzheimer’s disorder are of great in-
terest. While some initial results based on resting fMRI have been presented, accuracy, robustness, and relia-
bility are still relatively low. One highly promising direction is the development of dynamic functional activity and
functional connectivity approaches. These approaches have been shown to be especially promising most likely
due to the highly dynamic nature of the brain and the unconstrained nature of resting fMRI. Currently, there are
no methods that can provide a full characterization of temporal, spatial, and spatio-temporal dynamics nor can
most existing approaches characterize heterogenous subgroups or complex multiscale relationships. We will
develop new methods that can effectively capture dynamic connectivity and provide summary metrics with a
focus on individualized prediction of Alzheimer’s disease well prior to the onset of the illness. We propose a
novel family of models that builds on the well-structured framework of joint blind source separation to capture a
more complete characterization of (potentially nonlinear) spatio-temporal dynamics. Our models will also pro-
duce a rich set of metrics to characterize the available dynamics and enable in depth comparison with currently
available models. We show evidence that such measures are likely to be considerably more sensitive and more
accurate in classifying individuals. We will extensively validate our approaches in a variety of ways including
simulations, concurrent EEG/fMRI data, and evaluation on a large normative data set. We will apply the devel-
oped methods to several large datasets including a large longitudinal sample of individuals who have been
scanned at Emory University with resting fMRI who also have CSF amyloid and tau PET measures. We will use
the developed markers to predict cognitive decline, amyloid, and tau levels in these data and include both a
discovery data set as well as an independent replication data set. Successful completion of our aims will be an
important first step towards providing an opportunity to develop and evaluate interventions early enough to have
a positive impact on long-term prognosis. We will provide open source tools and release data throughout the
duration of the project via GitHub, a web portal and the NITRC repository, hence enabling other investigators to
compare their own methods with our own as well as to apply them to a large variety of brain disorders. Our tools
also have wide application to the study of the healthy brain as well as many other diseases.
37
项目摘要/摘要
生物标志物用于识别临床前或前驱阿尔茨海默氏症疾病的生物标志物的发展非常重要
Terest。尽管已经提出了基于静止fMRI的一些初始结果,但准确性,鲁棒性和可靠性
能力仍然相对较低。一个高度紧迫的方向是动态功能活动的发展和
功能连接方法。这些方法已被证明是特别有希望的
由于大脑的高度动态性和静止fMRI的不受约束性质。目前,有
没有可以提供临时,空间和时空动态的完整表征的方法
大多数现有的方法是异质亚组或复杂的多尺度关系的特征。我们将
开发可以有效捕获动态连接并提供摘要指标的新方法
在疾病发作之前,将重点关注对阿尔茨海默氏病的个性化预测。我们提出了一个
新颖的模型家族,建立在结构良好的盲目源分离的框架上,以捕获
(潜在的非线性)时空动力学的更完整的表征。我们的模型也将支持
插入一组丰富的指标,以表征可用的动力学,并与当前的深度比较启用
可用型号。我们证明了此类措施可能更敏感和更多的证据
准确地分类个体。我们将以各种方式广泛验证我们的方法
模拟,同时脑电图/FMRI数据以及对大型正常数据集的评估。我们将应用Devel-
对几个大数据集的操作方法,包括大量的纵向样本
在埃默里大学(Emory University)扫描了静止的fMRI,他们还具有CSF淀粉样蛋白和Tau宠物的测量值。我们将使用
在这些数据中预测认知能力下降,淀粉样蛋白和TAU水平的开发标记物,并包括
发现数据集以及独立的复制数据集。成功完成我们的目标将是
重要的第一步朝着提供足够早期开发和评估干预措施的机会
对长期预后的积极影响。我们将提供开源工具并在整个过程中发布数据
通过Web门户网站和NITRC存储库Github的项目持续时间,因此使其他研究人员能够
将自己的方法与我们自己的方法进行比较,并将其应用于各种各样的脑部疾病。我们的工具
还广泛应用健康大脑以及许多其他疾病。
37
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TULAY ADALI其他文献
TULAY ADALI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TULAY ADALI', 18)}}的其他基金
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10156006 - 财政年份:2021
- 资助金额:
$ 77.78万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10559654 - 财政年份:2021
- 资助金额:
$ 77.78万 - 项目类别:
Data-driven solutions for temporal, spatial, and spatiotemporal dynamic functional connectivity
用于时间、空间和时空动态功能连接的数据驱动解决方案
- 批准号:
10375496 - 财政年份:2021
- 资助金额:
$ 77.78万 - 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10633189 - 财政年份:2021
- 资助金额:
$ 77.78万 - 项目类别:
Data driven dynamic activity/connectivity methods for early detection of Alzheimer’s
用于早期检测阿尔茨海默病的数据驱动的动态活动/连接方法
- 批准号:
10468956 - 财政年份:2021
- 资助金额:
$ 77.78万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
9889183 - 财政年份:2019
- 资助金额:
$ 77.78万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10112311 - 财政年份:2019
- 资助金额:
$ 77.78万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10559628 - 财政年份:2019
- 资助金额:
$ 77.78万 - 项目类别:
Dynamic imaging-genomic models for characterizing and predicting psychosis and mood disorders
用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10359205 - 财政年份:2019
- 资助金额:
$ 77.78万 - 项目类别:
Male/Female differences in psychosis and mood disorders:Dynamic imaging-genomic models for characterizing and predicting psychosis and mood d
精神病和情绪障碍的男性/女性差异:用于表征和预测精神病和情绪障碍的动态成像基因组模型
- 批准号:
10093861 - 财政年份:2019
- 资助金额:
$ 77.78万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 77.78万 - 项目类别: