Wearable Multi-modality Cuffless Blood Pressure Monitoring
可穿戴多模态无袖血压监测
基本信息
- 批准号:10588138
- 负责人:
- 金额:$ 54.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAccidentsAlgorithmsAnesthesia proceduresAnnual ReportsArterial LinesBenchmarkingBloodBlood PressureBlood Pressure MonitorsBrainCardiac Surgery proceduresCathetersClinicalContinuity of Patient CareDataDatabasesDevelopmentElectrocardiogramEnsureEvaluationFinite Element AnalysisFutureGoalsHeartHypertensionHypotensionImpairmentIndividualIndustryInfectionIntensive Care UnitsInterventionInvestigationKidneyMachine LearningMeasurementMeasuresMethodsMonitorOperative Surgical ProceduresOrganOutcomePainPatient MonitoringPatient Monitoring SystemPatientsPerformancePerioperativePhysiologic pulsePostoperative PeriodProcessPulse OximetryRiskSignal TransductionSiteStreamSystemTechnologyTemporal ArteriesTestingTimeTransport ProcessUnited StatesUnited States National Institutes of HealthWorkdata formatdata fusiondata privacydata sharingdeep learningexperiencefeature extractionhigh riskimprovedindexinginfection riskinventionlight weightmonitoring devicemortalitymultimodalitynovelpatient privacyportabilityprivacy protectionpublic databaserecurrent neural networksensorsurgical risktechnology developmenttonometryultrasound
项目摘要
Abstract
Continuous blood pressure (BP) is one of the most critical monitoring parameters during anesthesia, surgery
and in intensive care units (ICU). Both hypotension and hypertension can impair the function of vital organs
(e.g. brain, heart and kidneys), and intraoperative hypotension is associated with postoperative mortality, which
makes it important to detect BP changes as quickly as possible to prompt timely intervention or therapy.
However, the current gold standard technology for BP monitoring, an invasive arterial line (a-line), causes
patient suffering (physical pain) and increases the risk of infection. In the United States, about 80,000 blood
stream infections caused by an arterial catheter are reported annually. Due to the inherent risks associated
with a-line, it is used only for clinically indicated high risk surgeries or ICU patients. As a result of the a-line
risks and discomforts, even though more than 300 million surgeries are performed worldwide each year, only a
small portion receive continuous BP monitoring. In addition, although vital sign (ECG, pulse oximetry, BP etc)
monitoring is routine in surgical rooms and ICUs, currently most monitoring devices are fixed in individual
rooms, which result in gaps in patient monitoring, accidents during patient transport process, and extra work to
disconnect and reconnect sensors when leaving and entering a new facility. Seamless “continuum of care”
monitoring—for instance from surgical room to ICUs, including transport in between and without reconnecting
sensors—is on top of the wish list by clinician. In recent years, efforts have been made to develop portable
ECG monitors and “mobile ICUs”; however so far, no continuous and seamless BP monitoring has been
achieved. This proposal fully leverages the outcomes from the related R21 (EB022271) project. We will
develop novel machine learning and deep learning based data fusion algorithms to use existing vital signs for
continuous BP monitoring, then integrate them with our unique wearable patient monitoring system to form a
novel perioperative patient monitoring system. We will test the system’s performance against gold standard a-
line and Finapres BP technologies. to develop a fully functional technology for noninvasive, continuous, and
seamless BP monitoring. We will also develop a public database for future BP technology development. The
proposed multimodality algorithms, seamless BP monitoring system and PhysioNet database will provide
major steps forward to meet the clinical need for noninvasive continuous BP monitoring.
抽象的
连续血压(BP)是麻醉期间最关键的监测参数之一
和重症监护病房(ICU)。低血压和高血压都会损害重要器官的功能
(例如大脑,心脏和肾脏),术中低血压与术后死亡率有关
使尽可能快地检测BP更改以提示及时干预或治疗非常重要。
但是,目前用于BP监测的黄金标准技术(一种侵入性动脉线(A-Line))导致
患者痛苦(身体疼痛)并增加感染的风险。在美国,大约80,000血
每年报告由手工艺品引起的溪流感染。由于继承风险相关
使用A线,它仅用于临床指示的高风险手术或ICU患者。由于A线的结果
即使全世界在全球进行超过3亿手术,但只有风险和不适感
小部分接收连续的BP监控。另外,虽然生命体征(ECG,脉搏血氧饱和度,BP等)
监测是手术室和ICU中的常规
房间,导致患者监测差距,患者运输过程中的事故以及额外的工作
离开并进入新设施时断开并重新连接传感器。无缝的“护理连续体”
监视 - 例如,从外科室到ICU,包括在之间和不重新连接的情况下运输
传感器 - 临床上的愿望清单之上。近年来,已经努力开发便携式
ECG监视和“移动ICU”;但是到目前为止,尚无连续和无缝的BP监控
成就了。该提案完全利用了相关R21(EB022271)项目的结果。我们将
开发新颖的机器学习和基于深度学习的数据融合算法,以使用现有的生命体征
连续的BP监控,然后将它们与我们独特的可穿戴患者监控系统集成在一起,以形成
新颖的周期性患者监测系统。我们将根据金标准A-测试系统的性能
线路和Finapres BP技术。为无创,连续和
无缝的BP监控。我们还将为未来的BP技术开发开发一个公共数据库。这
建议的多模式算法,无缝的BP监视系统和Physionet数据库将提供
向前迈进的主要步骤满足了对无创的连续BP监测的临床需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
QUAN ZHANG其他文献
QUAN ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('QUAN ZHANG', 18)}}的其他基金
Wearable Multi-modality Cuffless Blood Pressure Monitoring
可穿戴多模态无袖血压监测
- 批准号:
10489962 - 财政年份:2021
- 资助金额:
$ 54.28万 - 项目类别:
Wearable Multi-modality Cuffless Blood Pressure Monitoring
可穿戴多模态无袖血压监测
- 批准号:
10712086 - 财政年份:2021
- 资助金额:
$ 54.28万 - 项目类别:
Wearable Multi-modality Cuffless Blood Pressure Monitoring
可穿戴多模态无袖血压监测
- 批准号:
10390446 - 财政年份:2021
- 资助金额:
$ 54.28万 - 项目类别:
Improving Calibration of Wearable Blood Pressure Monitoring
改进可穿戴血压监测的校准
- 批准号:
9387958 - 财政年份:2017
- 资助金额:
$ 54.28万 - 项目类别:
相似国自然基金
基于公众剂量评价的核事故应急疏散模型及算法研究
- 批准号:72104207
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
严重事故堆芯熔融物μ子成像监测系统及重建算法研究
- 批准号:11305073
- 批准年份:2013
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于动态空间的危险化学品事故应急决策研究
- 批准号:71201093
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于视频图像自动识别交通事故的算法研究
- 批准号:61071217
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
基于信息融合的塔式起重机安全预警技术基础研究
- 批准号:50975218
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 54.28万 - 项目类别:
Implementing and Scaling the STEADI Fall Prevention Algorithm Using a Conversational Relational Agent for Community-Dwelling Older Adults with and without Mild Cognitive Impairment (MCI).
使用对话关系代理为社区居住的患有或不患有轻度认知障碍 (MCI) 的老年人实施和扩展 STEADI 跌倒预防算法。
- 批准号:
10822816 - 财政年份:2023
- 资助金额:
$ 54.28万 - 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10784562 - 财政年份:2023
- 资助金额:
$ 54.28万 - 项目类别:
Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
- 批准号:
10727737 - 财政年份:2023
- 资助金额:
$ 54.28万 - 项目类别:
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
$ 54.28万 - 项目类别: