Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
基本信息
- 批准号:10272391
- 负责人:
- 金额:$ 26.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-14 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalBreastBreast Cancer CellBreast Cancer Risk FactorBreast Cancer cell lineCD47 geneCRISPR interferenceCRISPR screenCancer ModelCancer PatientCancer RelapseCandidate Disease GeneCell CommunicationCell LineCellsClinicalClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsDependenceDevelopmentDrug TargetingDrug resistanceEffectivenessEngineeringEstrogen receptor positiveExhibitsFluorescent ProbesGene CombinationsGene ExpressionGene Expression ProfileGene TargetingGenesGeneticGenetic TranscriptionGenomicsGrowthImmune EvasionImmune systemImmunosuppressionImmunotherapyIn VitroIndividualMCF10A cellsMCF7 cellMagnetismMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMediatingMetastatic breast cancerModelingMolecularNatureNeoplasm MetastasisOrganoidsOutcomePatientsPhagocytesPhagocytosisPhenotypePost-Translational Protein ProcessingProcessPropertyProteinsProteomicsRelapseResistanceResistance developmentRoleSignal TransductionSubgroupSystemTestingTherapeuticTrastuzumabTumor-associated macrophagesadaptive immune responseanti-canceranticancer activitybiomarker-drivenbreast cancer progressioncancer cellcancer therapydifferential expressiondruggable targetexperimental studygenome-widehigh riskhormone therapyimprovedin vivomacrophagemalignant breast neoplasmmammary epitheliumneoplastic cellnext generationnoveloverexpressionreceptorrelapse riskresistance mechanismsialylationtargeted treatmenttherapeutic targettherapy resistantthree dimensional cell culturetranscriptomicstreatment responsetumortumor initiationtumor microenvironmenttumor progressiontumorigenesis
项目摘要
Abstract/Project Summary
Metastatic breast cancer and relapse following therapy are dependent on (1) resistance to recognition and
destruction of cancer cells by the immune system, and (2) development of intrinsic resistance to targeted and
endocrine therapies. The study of these processes using in vitro cancer models have been limited in scale and
often lack key properties of the tumor microenvironment. We recently developed a scalable cancer spheroid
system that enabled the first genome-wide CRISPR screens in 3D culture; phenotypes in this system much
better reflect in vivo tumors (Nature, 2020). In addition, we developed a magnetic separation strategy to rapidly
identify regulators of phagocytosis by macrophages (Nature Genetics, 2018) and have successfully extended
this strategy to study macrophage-tumor cell interactions. Here we will use these systems to identify
regulators of therapeutic relapse and immune evasion in metastatic breast cancer.
To investigate mechanisms of relapse after therapy, we will focus on four ER+ breast cancer subgroups with
high relapse risk previously identified by the Curtis Lab (Project 1). This has formed the basis of a biomarker-
driven clinical trial targeting the presumed candidate drivers in these high-risk subgroups. Since the amplicons
defining these subgroups each contain multiple genes, we will use functional CRISPR perturbations to test which
genes (or combinations thereof) are the true drivers. Further, we will build on the comprehensive characterization
of these tumors from transcriptomics (Project 1) and spatial proteomics (Project 2), adding functional
measurements of the requirement for each altered factor in growth and resistance to therapy using high-
throughput CRISPR screens. Together these studies will dramatically enhance our understanding of which
genes are critical targets for improved therapies in high-relapse risk breast cancers.
To investigate how metastatic tumors evade the immune system, we will focus on macrophage-tumor
interactions. Surprisingly, although macrophages comprise 50% of the cell mass of some tumors, breast
cancer cells appear resistant to macrophage killing. This is largely due to anti-phagocytic signals expressed by
cancer cells, including CD47; however, accumulating evidence points to the existence of additional,
unidentified anti-phagocytic signals in breast cancer. In addition, tumor-associated macrophages (TAM) are
re-wired to support tumor development and have reduced phagocytosis. It remains unclear, however, which
genes mediate resistance to phagocytosis in high-risk IC subtypes, and which macrophage genes underlie
immunosuppression by metastatic breast cancers. Here, we will systematically identify genes limiting anti-cancer
activity by macrophages by conducting CRISPR screens in both macrophages and cancer cells, making use of
sophisticated ALI patient-derived organoid models to validate hits. These complementary approaches will
functionally define breast cancer driver genes and therapeutic targets that control therapeutic response and
immune evasion, informing the next generation of clinical trials.
摘要/项目摘要
转移性乳腺癌和治疗后复发取决于(1)对识别的抗性,
免疫系统对癌细胞的破坏,以及(2)对靶向和靶向免疫系统的内在抗性的发展。
内分泌疗法使用体外癌症模型对这些过程的研究在规模上受到限制,
通常缺乏肿瘤微环境的关键特性。我们最近开发了一个可扩展的癌症球体
该系统实现了3D培养中的第一个全基因组CRISPR筛选;该系统中的表型
更好地反映体内肿瘤(Nature,2020)。此外,我们还开发了一种磁性分离策略,
鉴定巨噬细胞吞噬作用的调节剂(Nature Genetics,2018),并已成功地扩展
这种策略来研究巨噬细胞与肿瘤细胞的相互作用。在这里,我们将使用这些系统来识别
转移性乳腺癌治疗复发和免疫逃避的调节因子。
为了研究治疗后复发的机制,我们将关注四个ER+乳腺癌亚组,
Curtis实验室先前确定的高复发风险(项目1)。这就形成了生物标志物的基础-
针对这些高风险亚组中假定的候选驱动因素的临床试验。因为扩增子
定义这些亚组每个都包含多个基因,我们将使用功能性CRISPR扰动来测试
基因(或其组合)是真正的驱动因素。此外,我们将建立在全面表征
这些肿瘤的转录组学(项目1)和空间蛋白质组学(项目2),增加功能
测量生长中每个改变的因子的需求和对使用高浓度的抗肿瘤药物治疗的抗性,
通过CRISPR筛选。这些研究将极大地增强我们对
基因是改善高复发风险乳腺癌治疗的关键靶点。
为了研究转移性肿瘤如何逃避免疫系统,我们将重点放在巨噬细胞-肿瘤
交互.令人惊讶的是,尽管巨噬细胞占某些肿瘤细胞质量的50%,但乳腺癌细胞中的巨噬细胞占50%。
癌细胞似乎对巨噬细胞杀伤有抵抗力。这在很大程度上是由于抗吞噬细胞信号表达,
癌细胞,包括CD 47;然而,越来越多的证据表明存在额外的,
乳腺癌中未鉴定的抗吞噬细胞信号。此外,肿瘤相关巨噬细胞(TAM)
重新连接以支持肿瘤发展并具有减少的吞噬作用。然而,尚不清楚的是,
基因介导高风险IC亚型对吞噬作用的抵抗,
转移性乳腺癌的免疫抑制。在这里,我们将系统地识别限制抗癌的基因,
通过在巨噬细胞和癌细胞中进行CRISPR筛选,
复杂的ALI患者源性类器官模型来验证命中。这些补充办法将
在功能上定义乳腺癌驱动基因和控制治疗反应的治疗靶标,
免疫逃避,为下一代临床试验提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL C BASSIK其他文献
MICHAEL C BASSIK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL C BASSIK', 18)}}的其他基金
High-throughput development and characterization of compact tools for transcriptional and chromatin perturbations
用于转录和染色质扰动的紧凑工具的高通量开发和表征
- 批准号:
10632140 - 财政年份:2021
- 资助金额:
$ 26.33万 - 项目类别:
Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
- 批准号:
10704691 - 财政年份:2021
- 资助金额:
$ 26.33万 - 项目类别:
Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
- 批准号:
10911510 - 财政年份:2021
- 资助金额:
$ 26.33万 - 项目类别:
High-throughput development and characterization of compact tools for transcriptional and chromatin perturbations
用于转录和染色质扰动的紧凑工具的高通量开发和表征
- 批准号:
10276866 - 财政年份:2021
- 资助金额:
$ 26.33万 - 项目类别:
High-throughput systematic characterization of regulatory element function
调控元件功能的高通量系统表征
- 批准号:
10238366 - 财政年份:2020
- 资助金额:
$ 26.33万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
10373026 - 财政年份:2018
- 资助金额:
$ 26.33万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
10133002 - 财政年份:2018
- 资助金额:
$ 26.33万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
9894638 - 财政年份:2018
- 资助金额:
$ 26.33万 - 项目类别:
High-throughput systematic characterization of regulatory element function
调控元件功能的高通量系统表征
- 批准号:
9247643 - 财政年份:2017
- 资助金额:
$ 26.33万 - 项目类别:
Using Protein Interaction Networks and Combinatorial Screens to target KRAS driven cancer
使用蛋白质相互作用网络和组合筛选来靶向 KRAS 驱动的癌症
- 批准号:
9315124 - 财政年份:2015
- 资助金额:
$ 26.33万 - 项目类别:
相似海外基金
Deciphering the Mechanisms Underpinning Breast Cancer Cell Intravasation and Extravasation in an in vitro Vascularized System
破译体外血管系统中乳腺癌细胞内渗和外渗的机制
- 批准号:
486379 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Studentship Programs
Multiple functions of Adipsin in adipocyte-breast cancer cell interaction
Adipsin 在脂肪细胞-乳腺癌细胞相互作用中的多种功能
- 批准号:
22K15532 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role of prolactin in adipocyte-breast cancer cell crosstalk
催乳素在脂肪细胞-乳腺癌细胞串扰中的作用
- 批准号:
10358133 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Deciphering the role of the Formin / Wnt-PCP axis in breast cancer cell motility and Metastasis.
破译 Formin / Wnt-PCP 轴在乳腺癌细胞运动和转移中的作用。
- 批准号:
473688 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Fellowship Programs
The roles of TRAF2 and RIP1 in breast cancer cell survival
TRAF2 和 RIP1 在乳腺癌细胞存活中的作用
- 批准号:
10363270 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
The roles of TRAF2 and RIP1 in breast cancer cell survival
TRAF2 和 RIP1 在乳腺癌细胞存活中的作用
- 批准号:
10619506 - 财政年份:2022
- 资助金额:
$ 26.33万 - 项目类别:
Regulation of breast cancer cell metabolism by an alternate cap-dependent mechanism of translation initiation.
通过另一种帽依赖性翻译起始机制调节乳腺癌细胞代谢。
- 批准号:
10088727 - 财政年份:2020
- 资助金额:
$ 26.33万 - 项目类别:
Regulation of breast cancer cell metabolism by an alternate cap-dependent mechanism of translation initiation.
通过另一种帽依赖性翻译起始机制调节乳腺癌细胞代谢。
- 批准号:
10466896 - 财政年份:2020
- 资助金额:
$ 26.33万 - 项目类别:
Investigating the effects of inflammation on breast cancer cell dormancy in the brain
研究炎症对大脑中乳腺癌细胞休眠的影响
- 批准号:
439809 - 财政年份:2020
- 资助金额:
$ 26.33万 - 项目类别:
Studentship Programs
Overcoming multi drug resistance in 3D breast cancer cell model by pH-sensitive biomimetic nanoparticles
pH敏感仿生纳米颗粒克服3D乳腺癌细胞模型中的多重耐药性
- 批准号:
20K20203 - 财政年份:2020
- 资助金额:
$ 26.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists