High-throughput development and characterization of compact tools for transcriptional and chromatin perturbations
用于转录和染色质扰动的紧凑工具的高通量开发和表征
基本信息
- 批准号:10276866
- 负责人:
- 金额:$ 99.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-09 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:BindingBiologicalBiological AssayCRISPR interferenceCatalogsCellsChromatinClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexDNA Binding DomainDNA MaintenanceDNA Modification ProcessDNA Sequence AlterationDNA-Binding ProteinsData SetDevelopmentDiseaseElementsEngineeringEnhancersEpigenetic ProcessExhibitsFutureGene ActivationGene ExpressionGene SilencingGenesGeneticGenetic ScreeningGenetic TranscriptionGenomeGenomicsHumanHuman GenomeKnock-outLabelLeadLearningLibrariesMaintenanceMapsMeasuresMemoryMethyltransferaseMolecularMolecular ProfilingPathway interactionsProgram DevelopmentPropertyProteinsRegulator GenesRegulatory ElementReporterReporter GenesRepressionResourcesSystemTechnologyTertiary Protein StructureTestingTimeTime StudyTranscriptional ActivationUntranslated RNAViralViral ProteinsWorkYeastscell typechromatin modificationcofactorepigenetic memoryepigenetic silencingepigenomeepigenomicsexperimental studygene therapygenome-widegenomic locushigh throughput screeninghistone modificationhuman diseaseimprovedinterestnanobodiesnovelprogramspromoterrecruitscreeningsynthetic proteintooltranscription factor
项目摘要
PROJECT SUMMARY
Genome-wide molecular profiling of dynamic DNA and chromatin modifications across diverse cell and disease
states have resulted in comprehensive catalogs of putative non-coding regulatory elements in the human
genome. Perturbation experiments are now critical to learn the causal functions of the DNA & histone
modifications at these genomic elements. However, existing tools to manipulate gene expression and chromatin
state suffer from partial or transient effects, are large and thus difficult to deliver, and exhibit high variability
across loci and cell types. These tools are currently drawn from a tiny fraction of the thousands of natural
chromatin regulatory complexes. A more complete toolbox of compact, efficient domains capable of
manipulating a broad range of chromatin pathways will transform our ability to determine the causal
function of particular chromatin modifications across the human genome and to control gene
expression.
Here, we propose to systematically and comprehensively measure the gene expression effects of
recruiting chromatin regulators and transcription factor protein domains that can interface with human chromatin
- a critical missing dataset. This is made possible by our recent development of the first high-throughput protein
domain recruitment assay in human cells, capable of measuring activity for tens of thousands of effector domains
simultaneously (Tycko et al, bioRxiv 2020). Using this system, we will recruit-and-release effector domains from
the promoter, wait, and then measure the magnitude and permanence of transcriptional silencing or activation
at a reporter locus. We will characterize thousands of domains drawn from human and viral chromatin and gene
regulators. In addition, we will create orthogonal nanobody libraries selected to recruit endogenous chromatin
regulators. We will then measure the function of these domains at a panel of endogenous genomic loci chosen
to represent diverse chromatin states. Finally, we will use genetic screens and epigenomic mapping assays to
determine the molecular networks that underpin the functions of these novel effectors. Therefore, we will create
and share a detailed resource of experimentally-measured, compact, efficient domains that can be fused onto
DNA-binding proteins in order to recruit desired chromatin regulatory complexes to act upon a genomic element.
At the same time, this study will provide detailed functional properties for all human transcriptional and chromatin
regulatory domains, serving as a starting point for future work on understanding the disease implications of
genetic mutations in the coding sequence of these regulators. Further, it will identify novel epigenome and
transcriptional effector domains that can impart permanent epigenetic memory, and identify combinations of
domains to impart a range of chromatin states not currently accessible with available perturbation tools. These
pathway-specific perturbation technologies will be critical to probe the function of the varied chromatin states at
regulatory elements that are currently being discovered and studied across diverse genomic loci and cell types.
项目总结
跨不同细胞和疾病的动态DNA和染色质修饰的全基因组分子图谱
各国已经制定了人类体内假定的非编码调控元件的全面目录
基因组。现在,微扰实验对于了解DNA和组蛋白的因果功能至关重要
这些基因组元素的修饰。然而,现有的操纵基因表达和染色质的工具
国家遭受部分或瞬时影响,规模较大,因此难以交付,并表现出高度的变异性
不同的基因座和细胞类型。这些工具目前是从数以千计的天然工具中提取的一小部分
染色质调节复合体。更完整的紧凑、高效域工具箱,能够
操纵广泛的染色质通路将改变我们确定原因的能力
人类基因组中特定染色质修饰的功能及其对控制基因的作用
表情。
在这里,我们建议系统和全面地衡量基因表达的影响
招募可与人染色质结合的染色质调节因子和转录因子蛋白结构域
-一个关键的缺失数据集。这是因为我们最近开发出了第一个高通量蛋白质
在人类细胞中的结构域招募试验,能够测量数万个效应结构域的活性
同时(Tycko等人,BioRxiv 2020)。使用这个系统,我们将招募和释放效应域
启动子,等待,然后测量转录沉默或激活的幅度和持久性
在一家记者中心。我们将描述从人类和病毒染色质和基因中提取的数千个结构域
监管者。此外,我们将创建正交纳米体库,以招募内源染色质
监管者。然后,我们将在选择的一组内源基因组座位上测量这些结构域的功能
代表不同的染色质状态。最后,我们将使用遗传筛选和表观基因组图谱分析来
确定支撑这些新型效应器功能的分子网络。因此,我们将创造
并共享经过实验测量的、紧凑的、高效的域的详细资源,这些域可以融合到
DNA结合蛋白,以招募所需的染色质调节复合体作用于基因组元件。
同时,这项研究将提供所有人类转录和染色质的详细功能特性
监管领域,作为今后了解以下疾病影响的工作的起点
这些调节子的编码序列发生了基因突变。此外,它还将鉴定新的表观基因组和
转录效应结构域,可以传递永久的表观遗传记忆,并识别
结构域给予一系列染色质状态,目前用现有的扰动工具无法获得。这些
途径特异性扰动技术对于探索不同染色质状态的功能将是至关重要的。
目前在不同的基因组座位和细胞类型中发现和研究的调控元件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL C BASSIK其他文献
MICHAEL C BASSIK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL C BASSIK', 18)}}的其他基金
High-throughput development and characterization of compact tools for transcriptional and chromatin perturbations
用于转录和染色质扰动的紧凑工具的高通量开发和表征
- 批准号:
10632140 - 财政年份:2021
- 资助金额:
$ 99.24万 - 项目类别:
Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
- 批准号:
10704691 - 财政年份:2021
- 资助金额:
$ 99.24万 - 项目类别:
Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
- 批准号:
10272391 - 财政年份:2021
- 资助金额:
$ 99.24万 - 项目类别:
Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
- 批准号:
10911510 - 财政年份:2021
- 资助金额:
$ 99.24万 - 项目类别:
High-throughput systematic characterization of regulatory element function
调控元件功能的高通量系统表征
- 批准号:
10238366 - 财政年份:2020
- 资助金额:
$ 99.24万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
10373026 - 财政年份:2018
- 资助金额:
$ 99.24万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
10133002 - 财政年份:2018
- 资助金额:
$ 99.24万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
9894638 - 财政年份:2018
- 资助金额:
$ 99.24万 - 项目类别:
High-throughput systematic characterization of regulatory element function
调控元件功能的高通量系统表征
- 批准号:
9247643 - 财政年份:2017
- 资助金额:
$ 99.24万 - 项目类别:
Using Protein Interaction Networks and Combinatorial Screens to target KRAS driven cancer
使用蛋白质相互作用网络和组合筛选来靶向 KRAS 驱动的癌症
- 批准号:
9315124 - 财政年份:2015
- 资助金额:
$ 99.24万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 99.24万 - 项目类别:
Research Grant














{{item.name}}会员




