High-throughput development and characterization of compact tools for transcriptional and chromatin perturbations
用于转录和染色质扰动的紧凑工具的高通量开发和表征
基本信息
- 批准号:10632140
- 负责人:
- 金额:$ 99.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-09 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:BindingBiologicalBiological AssayCRISPR interferenceCRISPR-mediated transcriptional activationCatalogsCellsChromatinClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexDNADNA Binding DomainDNA MaintenanceDNA Modification ProcessDNA Sequence AlterationDNA-Binding ProteinsData SetDevelopmentDiseaseElementsEngineeringEnhancersEpigenetic ProcessExhibitsFutureGene ActivationGene ExpressionGene SilencingGenesGeneticGenetic ScreeningGenetic TranscriptionGenomeGenomicsHumanHuman GenomeKnock-outLabelLearningLibrariesMaintenanceMapsMeasuresMemoryMethyltransferaseMolecularMolecular ProfilingPathway interactionsPropertyProteinsRegulator GenesRegulatory ElementReporterReporter GenesRepressed MemoryResourcesSystemTechnologyTertiary Protein StructureTestingTimeTranscriptional ActivationUntranslated RNAViralViral ProteinsWorkYeastscell typechromatin modificationcofactorepigenetic memoryepigenetic silencingepigenomeepigenomicsexperimental studygene therapygenetic manipulationgenome-widegenomic locushigh throughput screeninghistone modificationhuman diseaseimprovedinterestnanobodiesnovelpromoterrecruitscreeningsynthetic proteintooltranscription factor
项目摘要
PROJECT SUMMARY
Genome-wide molecular profiling of dynamic DNA and chromatin modifications across diverse cell and disease
states have resulted in comprehensive catalogs of putative non-coding regulatory elements in the human
genome. Perturbation experiments are now critical to learn the causal functions of the DNA & histone
modifications at these genomic elements. However, existing tools to manipulate gene expression and chromatin
state suffer from partial or transient effects, are large and thus difficult to deliver, and exhibit high variability
across loci and cell types. These tools are currently drawn from a tiny fraction of the thousands of natural
chromatin regulatory complexes. A more complete toolbox of compact, efficient domains capable of
manipulating a broad range of chromatin pathways will transform our ability to determine the causal
function of particular chromatin modifications across the human genome and to control gene
expression.
Here, we propose to systematically and comprehensively measure the gene expression effects of
recruiting chromatin regulators and transcription factor protein domains that can interface with human chromatin
- a critical missing dataset. This is made possible by our recent development of the first high-throughput protein
domain recruitment assay in human cells, capable of measuring activity for tens of thousands of effector domains
simultaneously (Tycko et al, bioRxiv 2020). Using this system, we will recruit-and-release effector domains from
the promoter, wait, and then measure the magnitude and permanence of transcriptional silencing or activation
at a reporter locus. We will characterize thousands of domains drawn from human and viral chromatin and gene
regulators. In addition, we will create orthogonal nanobody libraries selected to recruit endogenous chromatin
regulators. We will then measure the function of these domains at a panel of endogenous genomic loci chosen
to represent diverse chromatin states. Finally, we will use genetic screens and epigenomic mapping assays to
determine the molecular networks that underpin the functions of these novel effectors. Therefore, we will create
and share a detailed resource of experimentally-measured, compact, efficient domains that can be fused onto
DNA-binding proteins in order to recruit desired chromatin regulatory complexes to act upon a genomic element.
At the same time, this study will provide detailed functional properties for all human transcriptional and chromatin
regulatory domains, serving as a starting point for future work on understanding the disease implications of
genetic mutations in the coding sequence of these regulators. Further, it will identify novel epigenome and
transcriptional effector domains that can impart permanent epigenetic memory, and identify combinations of
domains to impart a range of chromatin states not currently accessible with available perturbation tools. These
pathway-specific perturbation technologies will be critical to probe the function of the varied chromatin states at
regulatory elements that are currently being discovered and studied across diverse genomic loci and cell types.
项目摘要
不同细胞和疾病中动态DNA和染色质修饰的全基因组分子谱分析
美国已经产生了人类中假定的非编码调节元件的全面目录,
基因组微扰实验现在对于了解DNA和组蛋白的因果功能至关重要
这些基因组元件的修饰。然而,现有的操纵基因表达和染色质的工具,
状态受到部分或瞬时效应影响,很大,因此难以传递,且表现出高可变性
跨基因座和细胞类型。这些工具目前是从成千上万的自然资源中提取的一小部分。
染色质调节复合物。一个更完整的紧凑,高效的域工具箱,能够
操纵广泛的染色质途径将改变我们确定因果关系的能力,
人类基因组中特定染色质修饰的功能以及控制基因
表情
在这里,我们建议系统和全面地测量基因表达的影响,
募集可与人类染色质相互作用的染色质调节因子和转录因子蛋白结构域
- 一个重要的缺失数据集这是我们最近开发的第一个高通量蛋白质
人细胞中的结构域募集测定,能够测量数万个效应结构域的活性
同时(Tycko et al,bioRxiv 2020)。使用这个系统,我们将从
启动子,等待,然后测量转录沉默或激活的程度和持久性
在一个报告者所在地。我们将从人类和病毒的染色质和基因中提取数千个结构域的特征,
监管部门此外,我们还将创建正交纳米抗体库,
监管部门然后,我们将测量这些结构域的功能,在一组内源性基因组位点选择
来代表不同的染色质状态。最后,我们将使用遗传筛选和表观基因组作图分析,
确定支撑这些新型效应器功能的分子网络。因此,我们将创建
并共享实验测量的、紧凑的、高效的域的详细资源,
DNA结合蛋白,以募集所需的染色质调节复合物作用于基因组元件。
同时,本研究将提供所有人类转录和染色质的详细功能特性
调控领域,作为未来工作的起点,了解疾病的影响,
这些调节因子编码序列中的基因突变。此外,它将确定新的表观基因组,
转录效应结构域,可以赋予永久的表观遗传记忆,并确定组合
结构域赋予一系列的染色质状态目前无法获得可用的扰动工具。这些
途径特异性微扰技术将是至关重要的,以探测不同染色质状态的功能,
目前正在不同基因组位点和细胞类型中发现和研究的调控元件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL C BASSIK其他文献
MICHAEL C BASSIK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL C BASSIK', 18)}}的其他基金
Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
- 批准号:
10704691 - 财政年份:2021
- 资助金额:
$ 99.26万 - 项目类别:
Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
- 批准号:
10272391 - 财政年份:2021
- 资助金额:
$ 99.26万 - 项目类别:
Project 3: Systematic characterization of factors controlling breast cancer progression and resistance
项目3:控制乳腺癌进展和耐药因素的系统表征
- 批准号:
10911510 - 财政年份:2021
- 资助金额:
$ 99.26万 - 项目类别:
High-throughput development and characterization of compact tools for transcriptional and chromatin perturbations
用于转录和染色质扰动的紧凑工具的高通量开发和表征
- 批准号:
10276866 - 财政年份:2021
- 资助金额:
$ 99.26万 - 项目类别:
High-throughput systematic characterization of regulatory element function
调控元件功能的高通量系统表征
- 批准号:
10238366 - 财政年份:2020
- 资助金额:
$ 99.26万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
10373026 - 财政年份:2018
- 资助金额:
$ 99.26万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
10133002 - 财政年份:2018
- 资助金额:
$ 99.26万 - 项目类别:
Development of novel protein-based therapeutics for lung cancer
开发基于蛋白质的新型肺癌疗法
- 批准号:
9894638 - 财政年份:2018
- 资助金额:
$ 99.26万 - 项目类别:
High-throughput systematic characterization of regulatory element function
调控元件功能的高通量系统表征
- 批准号:
9247643 - 财政年份:2017
- 资助金额:
$ 99.26万 - 项目类别:
Using Protein Interaction Networks and Combinatorial Screens to target KRAS driven cancer
使用蛋白质相互作用网络和组合筛选来靶向 KRAS 驱动的癌症
- 批准号:
9315124 - 财政年份:2015
- 资助金额:
$ 99.26万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 99.26万 - 项目类别:
Research Grant














{{item.name}}会员




