Replication-Coupled Repair: a mechanism for surviving UV irradiation
复制耦合修复:一种在紫外线照射下存活的机制
基本信息
- 批准号:10575759
- 负责人:
- 金额:$ 18.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:BRCA2 geneBacteriaCell DeathCell SurvivalCell physiologyCellsClinicalCoupledCouplingDNA DamageDNA RepairDNA Sequence RearrangementDNA biosynthesisDNA lesionDNA replication forkEscherichia coliEventGenetic RecombinationGenomeGenome StabilityGrowthHealthHigh-Throughput Nucleotide SequencingHomologous GeneHumanIn VitroLesionLightMalignant NeoplasmsMapsMediatingMicrosatellite InstabilityModelingMutagenesisMutateMutationNucleotide Excision RepairOutcomePathway interactionsPlasmidsPlayPoly(ADP-ribose) Polymerase InhibitorProcessProteinsRecoveryReplication-Associated ProcessReportingRoleTherapeuticTimeUV inducedUV induced DNA damageUltraviolet RaysWorkbasecancer cellefficacy validationenvironmental mutagensgene productgenome integritygenome-wideinhibitormutantpreventrecruitrepair enzymerepairedresponsetargeted cancer therapyultraviolet damageultraviolet irradiationultraviolet lesions
项目摘要
Project Summary
Near UV radiation (254nm light) induces DNA damage that blocks replication can result
in genomic rearrangements when it resumes from the wrong place, mutagenesis when the
incorrect base is incorporated opposite to the lesion, or cell death when the block to replication
cannot be overcome. Inaccurate replication in the presence of environmental mutagens such as
UV is responsible for the majority of mutagenesis and rearrangements observed in cancer cells.
Thus, understanding how disrupted replication forks are restored is critical to developing
therapeutics and strategies for preventing instabilities associated with these events. In humans,
the role of BRCA2 and RECQ proteins in maintaining and processing replication forks that
encounter DNA damage is well known. However, the mechanism by which replication is
restored remains unclear. Different models have suggested that either repair, translesion
synthesis, or recombination may operate to allow replication to resume. Yet, these pathways do
not all share equally beneficial outcomes. Whereas DNA repair is error free, translesion
synthesis and recombination are associated with elevated rates of mutations and genome
rearrangements respectively. Thus critical to advancing the field, is a clear determination of the
mechanism by which DNA replication resumes following disruption.
This work will demonstrate that replication forks disrupted by UV-induced DNA damage
are primarily processed through a general recovery mechanism that allows nucleotide excision
repair enzymes to access to the blocking lesion and effect repair. Most in vitro studies suggest
that the replisome is disrupted by DNA lesions in the leading strand template, but not lagging
strand template. Further leading strand lesion on plasmid substrates are preferentially processed
through nucleotide excision repair. Thus the first aim of this proposal will utilize CPD-seq, an
established high-throughput sequencing approach, to map the repair of UV lesions over time on
E. coli genome and demonstrate that leading strand lesions are preferentially repaired during
replication. The second aim of the proposal characterizes the role that holC, encoding the χ
subunit of the replisome, play in the replication-coupled repair. holC mutations are epistatic with
recF mutants which is specifically required to process and resume replication after disruption by
UV-induced damage. Further, HolC (χ) is reported to physically interact with UvrA. Therefore
this aim seeks to and demonstrate that the interaction occurs in response to and functions
following UV damage and demonstrate that the replication-coupled repair depends on the
presence of holC.
项目摘要
近紫外线辐射(254 nm光)诱导DNA损伤,阻断复制可能导致
在基因组重排中,当它从错误的位置重新开始时,
不正确的基础是纳入对面的病变,或细胞死亡时,块复制
无法克服在环境诱变剂存在下的不准确复制,
紫外线是负责大多数诱变和重排观察到的癌细胞。
因此,了解如何恢复中断的复制叉对于开发至关重要
用于预防与这些事件相关的不稳定性的治疗剂和策略。在人类中,
BRCA 2和RECQ蛋白在维持和处理复制叉中的作用,
DNA损伤是众所周知的。然而,复制的机制是
恢复情况尚不清楚。不同的模型表明,无论是修复,translesion
合成或重组可以操作以允许复制恢复。然而,这些途径
并非所有人都能分享同样有益的结果。而DNA修复是无错误的,translesion
合成和重组与突变率和基因组
分别重组。因此,对推进该领域至关重要的是明确确定
DNA复制在中断后恢复的机制。
这项工作将证明复制叉被紫外线诱导的DNA损伤破坏,
主要通过允许核苷酸切除的一般恢复机制进行处理
修复酶进入阻塞性损伤并实现修复。大多数体外研究表明
复制体被前导链模板中的DNA损伤破坏,但不被滞后的DNA损伤破坏。
链模板。质粒底物上的进一步前导链损伤优先加工
通过核苷酸切除修复因此,该提案的第一个目标将利用CPD-seq,
建立了高通量测序方法,以绘制紫外线损伤随时间的修复,
E.大肠杆菌基因组,并证明前导链损伤优先修复,
复制的该提案的第二个目的是描述holC的作用,
复制体的亚基,在复制偶联修复中发挥作用。holC突变是上位性的,
recF突变体,其在被破坏后特别需要处理和恢复复制,
紫外线引起的损伤。此外,据报道HolC(X)与UvrA物理相互作用。因此
这一目标旨在证明,这种相互作用的发生是为了响应
紫外线损伤后,并证明复制偶联修复取决于
HolC的存在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Courcelle其他文献
Justin Courcelle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Courcelle', 18)}}的其他基金
Mechanism of DNA interstrand crosslink repair in vivo
体内DNA链间交联修复机制
- 批准号:
8958561 - 财政年份:2015
- 资助金额:
$ 18.42万 - 项目类别:
R15 AREA: Replication in the Presence of Oxidative DNA damage
R15 区域:存在氧化 DNA 损伤时的复制
- 批准号:
8290917 - 财政年份:2012
- 资助金额:
$ 18.42万 - 项目类别:
Transcription-coupled repair of Oxidative DNA damage in vivo
体内氧化 DNA 损伤的转录偶联修复
- 批准号:
8061606 - 财政年份:2010
- 资助金额:
$ 18.42万 - 项目类别:
Transcription-coupled repair of Oxidative DNA damage in vivo
体内氧化 DNA 损伤的转录偶联修复
- 批准号:
7875831 - 财政年份:2010
- 资助金额:
$ 18.42万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 18.42万 - 项目类别:
Continuing Grant