A Comprehensive Platform for High-Throughput Profiling of the Human Reference Metabolome
用于人类参考代谢组高通量分析的综合平台
基本信息
- 批准号:10237905
- 负责人:
- 金额:$ 44.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAnimal ModelAnimalsAutomationBenchmarkingBiologicalCell LineageCellsClinicalCommunitiesComplexComplicationComputer softwareCredentialingDataData AnalysesData SetDatabasesDetectionEscherichia coliExperimental DesignsFishesFutureGeneticHepatocyteHumanInformaticsIsotopesManualsMass Spectrum AnalysisMetabolismMethodsMorphologic artifactsNamesNeurosciencesOligodendrogliaOrganismProblem SolvingProcessProtocols documentationResearchResearch PersonnelResourcesSamplingSignal TransductionTechnologyTestingTranslatingValidationWorkZebrafishadductautomated analysisbasecell typecomplex datacostdata toolsexperienceexperimental studygraphical user interfaceinformatics toolinterestliquid chromatography mass spectrometrymelanocytemetabolic abnormality assessmentmetabolomemetabolomicspreventprofessorprogramsstable isotopetooltrendtumor immunology
项目摘要
Project Summary
The last decade has seen two complementary trends: (i) technology to perform untargeted metabolomics
with liquid chromatography/mass spectrometry (LC/MS) has become readily available to most investigators,
and (ii) interest in metabolism has continued to heighten in many disparate research fields ranging from cancer
and immunology to neuroscience and aging. Accordingly, the number of investigators who are acquiring
untargeted metabolomic data with LC/MS is dramatically increasing. Yet, informatic tools to analyze the
acquired data have lagged far behind and interpretation of the results remains a serious challenge, even for
experienced users. Thus, there is a substantial number of investigators performing untargeted metabolomics
with LC/MS who either cannot interpret the data generated or, even worse, are interpreting it incorrectly.
When untargeted metabolomics is performed on a typical biological sample, it is common to detect
thousands to tens of thousands of signals (aka features). Translating these signals into metabolite names is
the biggest informatic barrier limiting biomedical applications of the technology. The process is arduous,
particularly for inexperienced investigators, because the majority of signals detected do not correspond to non-
redundant metabolites originating from the biological sample. Rather, most signals (up to 95% in some of our
experiments) are due to complicating factors such as contaminants, artifacts, fragments, etc. Because many of
these complicating signals are not currently in metabolomic databases such as METLIN, they can be
challenging to annotate for inexperienced users. While there are software programs available to annotate the
signals within the data, these tools are beyond the reach of most clinical and biological investigators because
(i) they are not automated with a graphical user interface, and (ii) they rely on a costly experimental design
involving isotopes to find contaminants and artifacts.
We propose to develop an automated solution to name and quantify most of the metabolites detected in
untargeted metabolomic LC/MS experiments. Our strategy is to assume the computational burden of
completely annotating all detected metabolites in untargeted metabolomic data, which only has to be
performed once for a given sample type, so that less-experienced investigators do not have to in their future
experiments. We will completely annotate untargeted metabolomic data sets from different biological samples
using the mz.unity software and credentialing technology developed by the Patti lab. Based on experiments
that we have already performed, we expect to find ~5,000 unique bonafide metabolites per sample. We will
then use these endogenous signals to develop targeted LC/MS methods that enable automated analysis of all
detectable metabolites (i.e., the “reference metabolome”). This will allow investigators with minimal expertise in
metabolomics to profile the unique and bonafide metabolites in their samples at an untargeted scale, but
without informatic barriers that have historically limited progress in the field.
项目摘要
过去十年出现了两个互补的趋势:(i)进行非靶向代谢组学的技术
随着液相色谱/质谱(LC/MS)已变得容易为大多数研究者所用,
以及(ii)在许多不同的研究领域中,对代谢的兴趣持续增加,
免疫学到神经科学和衰老。因此,正在获取的调查人员人数
LC/MS的非靶向代谢组学数据显著增加。然而,信息化工具来分析
获得的数据远远落后,对结果的解释仍然是一个严重的挑战,即使是
经验丰富的用户。因此,有相当数量的研究人员进行非靶向代谢组学
与LC/MS谁要么不能解释产生的数据,甚至更糟的是,不正确地解释它。
当对典型的生物样品进行非靶向代谢组学时,
数千到数万个信号(也称为特征)。将这些信号转化为代谢物名称是
这是限制该技术在生物医学领域应用的最大信息障碍。这个过程是艰苦的,
特别是对于没有经验的调查人员,因为大多数检测到的信号不对应于非-
源自生物样品的多余代谢物。相反,大多数信号(在我们的一些国家中高达95%)
实验)是由于复杂的因素,如污染物,文物,碎片等,因为许多
这些复杂的信号目前还没有在代谢组学数据库如METLIN中,它们可以是
这对于没有经验的用户来说是很有挑战性的。虽然有软件程序可用于注释
这些工具超出了大多数临床和生物学研究者的能力范围,
(i)它们不是用图形用户界面自动化的,并且(ii)它们依赖于昂贵的实验设计
用同位素来寻找污染物和文物
我们建议开发一种自动化的解决方案,以命名和量化在代谢物中检测到的大多数代谢物。
非靶向代谢组学LC/MS实验。我们的策略是假设计算负担
在非靶向代谢组学数据中完全注释所有检测到的代谢物,
对给定的样本类型进行一次,以便经验不足的研究者在未来不必进行
实验我们将完全注释来自不同生物样本的非靶向代谢组学数据集
使用MZ.Unity软件和Patti实验室开发的认证技术。以实验为基础
我们已经进行了,我们预计每个样品会发现~ 5,000种独特的bonafide代谢物。我们将
然后使用这些内源性信号开发靶向LC/MS方法,
可检测的代谢物(即,“参考代谢组”)。这将使具有最低专业知识的调查人员能够
代谢组学以非目标规模分析其样品中独特和真正的代谢物,但
没有历史上限制该领域进展的信息障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary J Patti其他文献
Gary J Patti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary J Patti', 18)}}的其他基金
A COMPREHENSIVE RESOURCE FOR HIGH-THROUGHPUT PROFILING OF WORM AND ZEBRAFISH METABOLOMES
用于蠕虫和斑马鱼代谢组高通量分析的综合资源
- 批准号:
10168257 - 财政年份:2018
- 资助金额:
$ 44.87万 - 项目类别:
A COMPREHENSIVE RESOURCE FOR HIGH-THROUGHPUT PROFILING OF WORM AND ZEBRAFISH METABOLOMES
用于蠕虫和斑马鱼代谢组高通量分析的综合资源
- 批准号:
10206284 - 财政年份:2018
- 资助金额:
$ 44.87万 - 项目类别:
Developing Metabolomic Technologies to Advance Environmental Exposure Analysis
开发代谢组学技术以推进环境暴露分析
- 批准号:
9977200 - 财政年份:2017
- 资助金额:
$ 44.87万 - 项目类别:
Developing Metabolomic Technologies to Advance Environmental Exposure Analysis
开发代谢组学技术以推进环境暴露分析
- 批准号:
10228022 - 财政年份:2017
- 资助金额:
$ 44.87万 - 项目类别:
Developing Metabolomic Technologies to Advance Environmental Exposure Analysis
开发代谢组学技术以推进环境暴露分析
- 批准号:
10673074 - 财政年份:2017
- 资助金额:
$ 44.87万 - 项目类别:
Developing Metabolomic Technologies to Advance Environmental Exposure Analysis
开发代谢组学技术以推进环境暴露分析
- 批准号:
10455670 - 财政年份:2017
- 资助金额:
$ 44.87万 - 项目类别:
Developing Metabolomic Technologies to Advance Environmental Exposure Analysis
开发代谢组学技术以推进环境暴露分析
- 批准号:
9754149 - 财政年份:2017
- 资助金额:
$ 44.87万 - 项目类别:
CELL-SPECIFIC ISOTOPE LABELING TO TRACK INTERCELLULAR METABOLITE EXCHANGE IN CANCER
细胞特异性同位素标记追踪癌症细胞间代谢物交换
- 批准号:
8928878 - 财政年份:2015
- 资助金额:
$ 44.87万 - 项目类别:
DEVELOPING THE UNTARGETED METABOLOMIC WORKFLOW FOR HIGH-THROUGHPUT ANALYSES
开发用于高通量分析的非目标代谢组工作流程
- 批准号:
8687653 - 财政年份:2012
- 资助金额:
$ 44.87万 - 项目类别:
相似海外基金
Impacts of hurricanes and social buffering on biological aging in a free-ranging animal model
飓风和社会缓冲对自由放养动物模型生物衰老的影响
- 批准号:
10781021 - 财政年份:2023
- 资助金额:
$ 44.87万 - 项目类别:
REU Site: Comparative Animal Model Approaches to Regeneration and Aging
REU 网站:再生和衰老的比较动物模型方法
- 批准号:
2243416 - 财政年份:2023
- 资助金额:
$ 44.87万 - 项目类别:
Continuing Grant
Early life trauma and aging using a long-lived animal model
使用长寿动物模型研究早期生命创伤和衰老
- 批准号:
10369990 - 财政年份:2022
- 资助金额:
$ 44.87万 - 项目类别:
Early life trauma and aging using a long-lived animal model
使用长寿动物模型研究早期生命创伤和衰老
- 批准号:
10550195 - 财政年份:2022
- 资助金额:
$ 44.87万 - 项目类别:
Programming amylin secretion to slow brain aging - an animal model
编程胰淀素分泌以减缓大脑衰老——动物模型
- 批准号:
9412623 - 财政年份:2017
- 资助金额:
$ 44.87万 - 项目类别:
Developing the Zebrafish as an animal model for aging
开发斑马鱼作为衰老动物模型
- 批准号:
6684675 - 财政年份:2003
- 资助金额:
$ 44.87万 - 项目类别:
Neurogenesis in an Animal Model of Cognitive Aging
认知衰老动物模型中的神经发生
- 批准号:
6532568 - 财政年份:2002
- 资助金额:
$ 44.87万 - 项目类别:
Neurogenesis in an Animal Model of Cognitive Aging
认知衰老动物模型中的神经发生
- 批准号:
6339639 - 财政年份:2001
- 资助金额:
$ 44.87万 - 项目类别:
Animal model for studying inner ear mechanism of aging
研究内耳衰老机制的动物模型
- 批准号:
12671674 - 财政年份:2000
- 资助金额:
$ 44.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




