Imaging Protein Synthesis on the Ribosome using Single-Molecule FRET

使用单分子 FRET 对核糖体上的蛋白质合成进行成像

基本信息

项目摘要

PROJECT ABSTRACT: The mechanism of protein synthesis and its regulation in the cell determines the diversity and capacity of the proteome. The central integration point for this regulatory control is the ribosome: a two-subunit, megadalton RNA-protein assembly. Highlighting the exquisite sensitivity of translation and the ribosome to regulation, the majority of known antibiotics either dysregulate or block ribosome function. Correspondingly, delineation of the protein synthesis mechanism in molecular detail has the potential to inform on paradigms of gene expression control and on how to combat the global health threat of emerging and drug resistant pathogens. As the loss of translation control is a hallmark of cancer, a deeper understanding of the protein synthesis mechanism also holds the promise of targeted therapeutic strategies for human disease treatments that are currently lacking. Investigations into structure-function relationships governing the translation mechanism have been principally conducted in bacteria using traditional ensemble methods. Such studies have revealed that the phase of translation in which protein is synthesized from messenger RNA (mRNA), termed elongation, is the most time intensive and commonly drug-targeted. They have also discerned that elongation entails the ribosome transiently interacting with specific cellular components through an ordered series of events, where the decoding of each mRNA codon is accompanied by large-scale conformational changes within the ribosome and interacting factors, and between the ribosome and its mRNA and transfer RNA (tRNA) substrates. The need for large amounts of homogenous material has thwarted analogous investigations of the human translation mechanism. Hence, conserved and divergent features of the translation mechanism between single-cell organisms and mammals that determine the molecular basis of antibiotic specificity have remained largely obscure. Here, we seek to delineate common and distinct features of bacterial and human protein synthesis — and the translation mechanisms in healthy and cancerous human cells — to: 1] improve the efficacies of existing antibiotics; 2] develop new strategies for antibiotic interventions; and 3] explore the possibility of therapies targeting unchecked proliferative cell growth and metastatic spread. We will do so by establishing quantitative, structural and kinetic frameworks for the elemental steps of elongation in bacteria and humans using an integrated battery of biophysical methods, including single-molecule fluorescence imaging and state-of-the-art cryo-electron microscopy. Our collaborative investigations will delineate the order and timing of conformational events underpinning fidelity in bacterial and human elongation cycles and the structural and mechanistic distinctions that determine the efficacies of clinically relevant antibiotics targeting these processes. These insights will shed light on how translation control is achieved, reveal atomic-resolution descriptions drug action on bacterial and human ribosomes and inform opportunities for new interventions aimed at improving the efficacy and potency of clinical treatments for infectious pathogens and human disease.
项目简介:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott C Blanchard其他文献

Breaking the barriers of translation
打破翻译的障碍
  • DOI:
    10.1038/nchembio0508-275
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
    13.700
  • 作者:
    Scott C Blanchard
  • 通讯作者:
    Scott C Blanchard

Scott C Blanchard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott C Blanchard', 18)}}的其他基金

HIV-1 Env structure and function assessed by parallel smFRET and cryoET
通过平行 smFRET 和 CryoET 评估 HIV-1 Env 结构和功能
  • 批准号:
    10201444
  • 财政年份:
    2019
  • 资助金额:
    $ 46.22万
  • 项目类别:
HIV-1 Env structure and function assessed by parallel smFRET and cryoET
通过平行 smFRET 和 CryoET 评估 HIV-1 Env 结构和功能
  • 批准号:
    9978713
  • 财政年份:
    2019
  • 资助金额:
    $ 46.22万
  • 项目类别:
HIV-1 Env structure and function assessed by parallel smFRET and cryoET
通过平行 smFRET 和 CryoET 评估 HIV-1 Env 结构和功能
  • 批准号:
    10425409
  • 财政年份:
    2019
  • 资助金额:
    $ 46.22万
  • 项目类别:
Single-molecule imaging of GPCR-arrestin complexes
GPCR-arrestin 复合物的单分子成像
  • 批准号:
    9481871
  • 财政年份:
    2017
  • 资助金额:
    $ 46.22万
  • 项目类别:
Quantitative investigations of transporter dynamics and uptake at the single-mole
单摩尔转运蛋白动力学和摄取的定量研究
  • 批准号:
    8601955
  • 财政年份:
    2013
  • 资助金额:
    $ 46.22万
  • 项目类别:
Quantitative investigations of transporter dynamics and uptake at the single-mole
单摩尔转运蛋白动力学和摄取的定量研究
  • 批准号:
    8430544
  • 财政年份:
    2013
  • 资助金额:
    $ 46.22万
  • 项目类别:
Next-generation Fluorescent Probes for Biological Research
用于生物研究的下一代荧光探针
  • 批准号:
    8541867
  • 财政年份:
    2012
  • 资助金额:
    $ 46.22万
  • 项目类别:
Next-generation Fluorescent Probes for Biological Research
用于生物研究的下一代荧光探针
  • 批准号:
    8387809
  • 财政年份:
    2012
  • 资助金额:
    $ 46.22万
  • 项目类别:
Next-generation Fluorescent Probes for Biological Research
用于生物研究的下一代荧光探针
  • 批准号:
    8667477
  • 财政年份:
    2012
  • 资助金额:
    $ 46.22万
  • 项目类别:
Imaging protein synthesis on the ribosome using single-molecule FRET
使用单分子 FRET 对核糖体上的蛋白质合成进行成像
  • 批准号:
    8035671
  • 财政年份:
    2010
  • 资助金额:
    $ 46.22万
  • 项目类别:

相似海外基金

DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.22万
  • 项目类别:
    Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.22万
  • 项目类别:
    Research Grant
Hitting bacteria with a Bam: Lectin-Like Antimicrobials as New Antibiotics
用 Bam 击中细菌:凝集素类抗菌剂作为新型抗生素
  • 批准号:
    DP230102150
  • 财政年份:
    2023
  • 资助金额:
    $ 46.22万
  • 项目类别:
    Discovery Projects
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
  • 批准号:
    FL210100071
  • 财政年份:
    2022
  • 资助金额:
    $ 46.22万
  • 项目类别:
    Australian Laureate Fellowships
Systematic identification of synthetic interactions in bacteria towards the next-generation of antibiotics
系统鉴定细菌与下一代抗生素的合成相互作用
  • 批准号:
    468567
  • 财政年份:
    2022
  • 资助金额:
    $ 46.22万
  • 项目类别:
    Operating Grants
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
  • 批准号:
    10708102
  • 财政年份:
    2022
  • 资助金额:
    $ 46.22万
  • 项目类别:
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
  • 批准号:
    10587015
  • 财政年份:
    2022
  • 资助金额:
    $ 46.22万
  • 项目类别:
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
  • 批准号:
    10581945
  • 财政年份:
    2021
  • 资助金额:
    $ 46.22万
  • 项目类别:
Developing novel antibiotics from natural products against resistant bacteria
从天然产物中开发针对耐药细菌的新型抗生素
  • 批准号:
    2599490
  • 财政年份:
    2021
  • 资助金额:
    $ 46.22万
  • 项目类别:
    Studentship
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
  • 批准号:
    10358855
  • 财政年份:
    2021
  • 资助金额:
    $ 46.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了