Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer

侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性

基本信息

  • 批准号:
    10594058
  • 负责人:
  • 金额:
    $ 43.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT The goal of this research is to develop and validate prognostic imaging biomarkers for breast cancer. A major challenge in the management of breast cancer is distinguishing patients with indolent disease from those with aggressive lethal disease at diagnosis. Currently, there are no reliable biomarkers to distinguish these groups on an individual level. Consequently, all patients with breast cancer receive adjuvant therapies, but not all benefit equally. This one-size-fits-all approach causes overtreatment, leading to morbidity and mortality. The need for reliable biomarkers is highlighted by the randomized TAILORx trial, which identified a small group of low-risk breast cancer patients who had very low rates of recurrence without chemotherapy, based on the 21-gene Oncotype Dx assay. Unfortunately, a majority (67%) of patients fell in the intermediate-risk range according to the genomic assay, and uncertainty still remains regarding the need for chemotherapy among these patients. Clearly, better biomarkers are needed to improve prognostication and patient stratification in breast cancer. Built on extensive preliminary data, we hypothesize that imaging characteristics reflect underlying tumor pathophysiology, and that image-based phenotyping of both tumor and parenchyma will provide much improved accuracy for recurrence prediction. To test this hypothesis, we propose to: (1) develop and improve methods to explicitly quantify multiregional MRI phenotypes including those of intratumoral subregion and parenchyma, and systematically assess their reproducibility; (2) develop a prognostic imaging signature using a large retrospective cohort of >1000 patients curated by the Stanford Oncoshare Project, and validate it in the prospective multi-center I-SPY 1 cohort; (3) construct a radiogenomic signature to perform additional testing of its prognostic value in 13 public gene expression cohorts of >5000 breast cancer patients. To further improve prognostication, we will build a multifactorial model that integrates imaging with clinical and genomic markers. This research will advance the quantitative imaging field by moving beyond traditional gross-tumor features and incorporating additional parenchymal and intratumoral imaging characteristics. If successful, it will provide much needed, rigorously validated imaging biomarkers for breast cancer, which can be further tested for clinical utility in prospective trials. Ultimately, such biomarkers can be used to stratify patients and guide individualized therapy, by allowing clinicians to avoid overtreatment of indolent disease and intensify treatment in women with aggressive disease.
摘要 本研究的目的是开发和验证乳腺癌的预后成像生物标志物。 乳腺癌管理的一个主要挑战是区分惰性疾病患者 从那些被诊断患有侵袭性致命疾病的人身上。目前,还没有可靠的生物标志物, 在个人层面上区分这些群体。因此,所有乳腺癌患者都接受 辅助疗法,但并非所有的受益相同。这种一刀切的做法会导致过度治疗, 导致发病率和死亡率。对可靠的生物标志物的需求是由随机 TAILORx试验,确定了一小群低风险乳腺癌患者, 基于21基因Oncotype Dx检测,未化疗的复发率。不幸的是, 根据基因组测定,大多数(67%)患者处于中等风险范围, 关于这些患者是否需要化疗仍然存在不确定性。很明显, 需要生物标志物来改善乳腺癌的诊断和患者分层。建立在 根据广泛的初步数据,我们假设影像学特征反映了潜在的肿瘤 病理生理学,以及肿瘤和实质的基于图像的表型将提供 大大提高了复发预测的准确性。为了验证这一假设,我们建议:(1) 开发和改进明确量化多区域MRI表型的方法,包括 肿瘤内亚区和实质,并系统地评估其可重复性;(2)开发一种 预后成像特征,使用由美国国家癌症研究所管理的>1000例患者的大型回顾性队列, 斯坦福大学Oncoshare项目,并在前瞻性多中心I-SPY 1队列中进行验证;(3) 构建放射基因组签名,在13个公众中对其预后价值进行额外测试 >5000名乳腺癌患者的基因表达队列。为了进一步提高解释能力,我们将 建立一个多因素模型,将成像与临床和基因组标志物相结合。本研究 将通过超越传统的大肿瘤特征来推进定量成像领域, 合并了额外的实质和肿瘤内成像特征。如果成功,它将 为乳腺癌提供急需的、经过严格验证的成像生物标志物, 在前瞻性试验中进一步测试临床效用。最终,此类生物标志物可用于分层 患者和指导个性化治疗,通过允许临床医生避免过度治疗惰性 疾病和加强治疗的妇女与侵略性疾病。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiomics and radiogenomics for precision radiotherapy.
  • DOI:
    10.1093/jrr/rrx102
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wu J;Tha KK;Xing L;Li R
  • 通讯作者:
    Li R
Integrating Radiosensitivity and Immune Gene Signatures for Predicting Benefit of Radiotherapy in Breast Cancer.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruijiang Li其他文献

Ruijiang Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruijiang Li', 18)}}的其他基金

Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
  • 批准号:
    10585301
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
  • 批准号:
    10332716
  • 财政年份:
    2018
  • 资助金额:
    $ 43.8万
  • 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
  • 批准号:
    9026075
  • 财政年份:
    2016
  • 资助金额:
    $ 43.8万
  • 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
  • 批准号:
    9197624
  • 财政年份:
    2016
  • 资助金额:
    $ 43.8万
  • 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
  • 批准号:
    8921946
  • 财政年份:
    2012
  • 资助金额:
    $ 43.8万
  • 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
  • 批准号:
    8279092
  • 财政年份:
    2012
  • 资助金额:
    $ 43.8万
  • 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
  • 批准号:
    8521207
  • 财政年份:
    2012
  • 资助金额:
    $ 43.8万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了