Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
基本信息
- 批准号:8921946
- 负责人:
- 金额:$ 24.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-02 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAffectAlgorithmsAnatomyAwardBreathingCancer PatientClinicalDataData SetDoseFutureGoalsGroupingImageImaging DeviceImaging TechniquesInterventionKnowledgeLeadLiftingLinear Accelerator Radiotherapy SystemsLiverLungLung NeoplasmsMalignant neoplasm of lungMedicalMentorsMethodologyMethodsModelingMorphologic artifactsMotionNatureNormal tissue morphologyOutcome StudyPancreasPathologyPatientsPerformancePhasePositioning AttributeProcessQuality of lifeRadiationRadiation therapyResearchResearch PersonnelResearch Project GrantsResearch TrainingRespirationRotationSafetySeriesSiteStatistical ModelsTechniquesTherapeuticTimeToxic effectTrainingUniversitiesWorkX-Ray Computed Tomographybasecancer radiation therapycareercareer developmentclinically significantdigitalflexibilityimage guidedimage reconstructionimaging modalityimaging systemimprovedinnovationlung volumemedical schoolsmeetingsparallel computerprogramsreconstructionresearch and developmentrespiratorysignal processingsimulationtime usetooltreatment durationtumor
项目摘要
Interfraction anatomic changes and intrafraction respiratory motion are the major limiting factors for escalating
radiation dose and improving local control in lung cancer radiotherapy. The advent of on-board x-ray imaging
device mounted on the medical linear accelerator (LINAC) has provided a tool to obtain valuable anatomic
information of the patient in the treatment position. However, due to the slow rotating nature of the on-board
imaging system (~1 min per rotation), obtaining volumetric information in real time is extremely challenging.
Existing methods have relied on grouping many projections acquired over multiple breathing cycles for several
minutes to reconstruct one static anatomy. Further, due to the fact that lung cancer patients tend to breathe
irregularly, the reconstructed images are often heavily contaminated by breathing motion artifacts. The goal of
this research project is to develop innovative real-time volumetric imaging methods that are able to reconstruct
the dynamic patient anatomy in real time (~0.1 s) using a single x-ray projection during dose delivery. This bold
goal is made practical by three integral components: effective use of an accurate patient-specific lung motion
model, advanced compressed sensing techniques for image reconstruction, and a massively parallel and yet
affordable computing platform based on graphics processing units (GPU). During the mentored K99 phase, the
candidate will draw on his signal processing and statistical modeling expertise to improve and optimize the
patient-specific lung motion model while gaining knowledge in lung patient anatomy and pathology, and to
quantitatively evaluate the lung motion model and interpret the clinical significance of the results. During the
independent R00 phase, a real-time volumetric imaging method which captures both interfraction anatomical
changes and intrafraction breathing motion, will be developed, implemented, and evaluated through systematic
phantom and patient studies. Successful completion of this project will overcome a critical barrier to the
urgently needed real-time volumetric image guidance in lung cancer radiotherapy and afford a powerful way for
us to safely escalate the radiation dose and improve local control of lung cancer. This project fits perfectly with
the candidate’s long-term career goal of establishing a high-quality independent research program to develop
state-of-the-art x-ray imaging techniques, which will provide real-time image guidance for cancer radiotherapy
and ultimately improve the therapeutic ratio and enhance the quality of life for cancer patients. Career
development and research training will be an integral component during the mentored phase of this project.
This training will be further supplemented with formal coursework at Stanford University School of Medicine, as
well as participation in research seminars and scientific meetings. The training and research contributions
supported by this K99/R00 award will substantially enhance the candidate’s career and serve to establish him
as a successful independent investigator in the near future.
分次间的解剖变化和分次内的呼吸运动是呼吸强度升高的主要限制因素。
提高肺癌放疗的局部控制。机载X射线成像的出现
安装在医用直线加速器(LINAC)上的装置提供了一种工具,
患者在治疗位置的信息。然而,由于船上的缓慢旋转性质,
成像系统(每次旋转约1分钟),真实的时间获得体积信息是极具挑战性的。
现有的方法依赖于对在多个呼吸周期内获得的许多投影进行分组,
重建一个静态解剖结构此外,由于肺癌患者倾向于呼吸
不规则的是,重建的图像经常被呼吸运动伪影严重污染。的目标
该研究项目旨在开发创新的实时体积成像方法,
在剂量输送期间使用单个X射线投影以真实的时间(~0.1 s)动态观察患者解剖结构。这个大胆
通过三个组成部分实现目标:有效使用准确的患者特异性肺运动
模型,用于图像重建的先进压缩传感技术,以及一个大规模并行但
基于图形处理单元(GPU)的经济实惠的计算平台。在辅导K99阶段,
候选人将利用他的信号处理和统计建模专业知识,以改善和优化
患者特定的肺部运动模型,同时获得肺部患者解剖学和病理学知识,
定量评估肺运动模型并解释结果的临床意义。期间
独立R 00相位,一种实时体积成像方法,
变化和分次内呼吸运动,将通过系统的
体模和患者研究。该项目的成功完成将克服一个关键的障碍,
实时容积图像引导技术是肺癌放疗中急需的一种新技术,
我们可以安全地增加辐射剂量,改善肺癌的局部控制。这个项目完全符合
候选人的长期职业目标,建立一个高质量的独立研究计划,以发展
最先进的X射线成像技术,将为癌症放射治疗提供实时图像指导
并最终提高癌症患者的治疗率和生活质量。职业生涯
发展和研究培训将是该项目辅导阶段的一个组成部分。
该培训将进一步补充斯坦福大学医学院的正式课程,
以及参加研究研讨会和科学会议。培训和研究贡献
在K99/R 00奖项的支持下,将大大提高候选人的职业生涯,并有助于建立他
成为一名成功的独立调查员
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruijiang Li其他文献
Ruijiang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruijiang Li', 18)}}的其他基金
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10594058 - 财政年份:2018
- 资助金额:
$ 24.22万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10332716 - 财政年份:2018
- 资助金额:
$ 24.22万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9026075 - 财政年份:2016
- 资助金额:
$ 24.22万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9197624 - 财政年份:2016
- 资助金额:
$ 24.22万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8279092 - 财政年份:2012
- 资助金额:
$ 24.22万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8521207 - 财政年份:2012
- 资助金额:
$ 24.22万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Research Grant














{{item.name}}会员




