Real-Time Volumetric Imaging for Lung Cancer Radiotherapy

肺癌放射治疗的实时体积成像

基本信息

  • 批准号:
    8521207
  • 负责人:
  • 金额:
    $ 15.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-02 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Interfraction anatomic changes and intrafraction respiratory motion are the major limiting factors for escalating radiation dose and improving local control in lung cancer radiotherapy. The advent of on-board x-ray imaging device mounted on the medical linear accelerator (LINAC) has provided a tool to obtain valuable anatomic information of the patient in the treatment position. However, due to the slow rotating nature of the on-board imaging system (~1 min per rotation), obtaining volumetric information in real time is extremely challenging. Existing methods have relied on grouping many projections acquired over multiple breathing cycles for several minutes to reconstruct one static anatomy. Further, due to the fact that lung cancer patients tend to breathe irregularly, the reconstructed images are often heavily contaminated by breathing motion artifacts. The goal of this research project is to develop innovative real-time volumetric imaging methods that are able to reconstruct the dynamic patient anatomy in real time (~0.1 s) using a single x-ray projection during dose delivery. This bold goal is made practical by three integral components: effective use of an accurate patient-specific lung motion model, advanced compressed sensing techniques for image reconstruction, and a massively parallel and yet affordable computing platform based on graphics processing units (GPU). During the mentored K99 phase, the candidate will draw on his signal processing and statistical modeling expertise to improve and optimize the patient-specific lung motion model while gaining knowledge in lung patient anatomy and pathology, and to quantitatively evaluate the lung motion model and interpret the clinical significance of the results. During the independent R00 phase, a real-time volumetric imaging method which captures both interfraction anatomical changes and intrafraction breathing motion, will be developed, implemented, and evaluated through systematic phantom and patient studies. Successful completion of this project will overcome a critical barrier to the urgently needed real-time volumetric image guidance in lung cancer radiotherapy and afford a powerful way for us to safely escalate the radiation dose and improve local control of lung cancer. This project fits perfectly with the candidate's long-term career goal of establishing a high-quality independent research program to develop state-of-the-art x-ray imaging techniques, which will provide real-time image guidance for cancer radiotherapy and ultimately improve the therapeutic ratio and enhance the quality of life for cancer patients. Career development and research training will be an integral component during the mentored phase of this project. This training will be further supplemented with formal coursework at Stanford University School of Medicine, as well as participation in research seminars and scientific meetings. The training and research contributions supported by this K99/R00 award will substantially enhance the candidate's career and serve to establish him as a successful independent investigator in the near future.
描述(由申请人提供):分次间解剖学变化和分次内呼吸运动是增加辐射剂量和改善局部 肺癌放疗中的对照。安装在医用直线加速器(LINAC)上的机载X射线成像设备的出现提供了一种工具,以获得患者在治疗位置的有价值的解剖信息。然而,由于机载成像系统的缓慢旋转性质(每次旋转约1分钟),真实的时间内获得体积信息极具挑战性。现有的方法依赖于对在多个呼吸周期内采集的多个投影进行分组几分钟来重建一个静态解剖结构。此外,由于肺癌患者倾向于不规则地呼吸的事实,重建的图像通常被呼吸运动伪影严重污染。该研究项目的目标是开发创新的实时体积成像方法,能够在剂量输送期间使用单个X射线投影实时(~0.1 s)重建动态患者解剖结构。真实的(~0.1 s)。这一大胆的目标通过三个不可或缺的组成部分实现:有效使用准确的患者特定肺部运动模型,用于图像重建的先进压缩传感技术,以及基于图形处理单元(GPU)的大规模并行且经济实惠的计算平台。在辅导K99阶段,候选人将利用其信号处理和统计建模专业知识来改进和优化患者特定的肺部运动模型,同时获得肺部患者解剖学和病理学方面的知识,并定量评估肺部运动模型并解释结果的临床意义。在独立R 00阶段,将通过系统体模和患者研究开发、实施和评价实时容积成像方法,该方法可捕获分次间解剖结构变化和分次内呼吸运动。该项目的成功完成将克服肺癌放射治疗中迫切需要的实时体积图像引导的关键障碍,并为我们安全地提高辐射剂量和改善肺癌的局部控制提供强有力的方法。该项目完全符合候选人的长期职业目标,即建立一个高质量的独立研究计划,开发最先进的X射线成像技术,为癌症放射治疗提供实时图像指导,最终提高治疗率,提高癌症患者的生活质量。职业发展和研究培训将是该项目辅导阶段的一个组成部分。这种培训将得到斯坦福大学医学院正式课程的进一步补充,并参加研究研讨会和科学会议。K99/R 00奖项所支持的培训和研究贡献将大大提高候选人的职业生涯,并有助于在不久的将来将他确立为一名成功的独立调查员。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical implementation of intrafraction cone beam computed tomography imaging during lung tumor stereotactic ablative radiation therapy.
  • DOI:
    10.1016/j.ijrobp.2013.08.015
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Li, Ruijiang;Han, Bin;Meng, Bowen;Maxim, Peter G.;Xing, Lei;Koong, Albert C.;Diehn, Maximilian;Loo, Billy W., Jr.
  • 通讯作者:
    Loo, Billy W., Jr.
A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning.
  • DOI:
    10.1088/0031-9155/59/21/6595
  • 发表时间:
    2014-11-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Gudur MS;Hara W;Le QT;Wang L;Xing L;Li R
  • 通讯作者:
    Li R
Evaluation of 3D fluoroscopic image generation from a single planar treatment image on patient data with a modified XCAT phantom.
  • DOI:
    10.1088/0031-9155/58/4/841
  • 发表时间:
    2013-02-21
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mishra P;Li R;James SS;Mak RH;Williams CL;Yue Y;Berbeco RI;Lewis JH
  • 通讯作者:
    Lewis JH
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruijiang Li其他文献

Ruijiang Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruijiang Li', 18)}}的其他基金

Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
  • 批准号:
    10585301
  • 财政年份:
    2023
  • 资助金额:
    $ 15.45万
  • 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
  • 批准号:
    10594058
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
  • 批准号:
    10332716
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
  • 批准号:
    9026075
  • 财政年份:
    2016
  • 资助金额:
    $ 15.45万
  • 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
  • 批准号:
    9197624
  • 财政年份:
    2016
  • 资助金额:
    $ 15.45万
  • 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
  • 批准号:
    8921946
  • 财政年份:
    2012
  • 资助金额:
    $ 15.45万
  • 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
  • 批准号:
    8279092
  • 财政年份:
    2012
  • 资助金额:
    $ 15.45万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了