MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
基本信息
- 批准号:9026075
- 负责人:
- 金额:$ 36.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdoptionAtlasesBayesian MethodBayesian ModelingBrainCalibrationClinicalDataDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDiseaseDoseEvaluationFunctional ImagingGeometryGoalsGoldHead and neck structureImageImage AnalysisMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMapsMethodsModalityModelingModificationOrganPatientsPerfusionPhotonsPositron-Emission TomographyPredispositionProbabilityProceduresProcessProstateProtonsRadiationRadiation therapySiteSourceStagingSystemTechniquesattenuationbasecomputerized toolscostdensityelectron densityimage guidedimaging biomarkerimaging modalityimprovedmagnetic fieldmultimodalitynovelpublic health relevancequality assurancereconstructionspectroscopic imagingsuccesstooltreatment planningtreatment response
项目摘要
DESCRIPTION (provided by applicant): CT is currently the gold standard in radiation therapy treatment planning. MRI provides a number of advantages over CT, including improved accuracy of target delineation, reduced radiation exposure, and simplified clinical workflow. There are two major technical hurdles that are impeding the clinical adoption of MRI-based radiation treatment planning: (1) geometric distortion, and (2) lack of electron density information. The goal of this project is to develop novel image analysis and computational tools to enable MRI-based radiation treatment planning. We hypothesize that accurate patient geometry and electron density information can be derived from MRI if the appropriate MR image acquisition, reconstruction, and analysis methods are applied. In Aim 1, we will improve the geometric accuracy of MRI by minimizing system-level and patient- specific distortions. To maintain sufficient system-level accuracy, we will perform comprehensive machine- specific calibrations and ongoing quality assurance procedures. To correct patient-induced distortions, we will develop novel computational tools to derive a detailed magnetic field distortion map based on physical principles, which is used to correct susceptibility-induced spatial distortions. In Aim 2, we will develop a unifying Bayesian method for quantitative electron density mapping, by combining the complementary intensity and geometry information. By utilizing multiple patient atlases and panoramic, multi-parametric MRI with differential contrast, we will apply machine learning techniques to encode the information given by intensity and geometry into two conditional probability density functions. These will be combined into one unifying posterior probability density function, which provides the optimal electron density on a continuous scale. In Aim 3, we will clinically evaluate the geometric and dosimetric accuracy of MRI for treatment planning in terms of 3 primary end points: (1) organ contours, (2) patient setup based on reference images, and (3) 3D dose distributions (both photon and proton), using CT as the ground truth. These evaluations will be conducted through patient studies at multiple disease sites, including brain, head and neck, and prostate. Success of the project will afford distortion-free MRI with reliable, quantitative electron density information. This will pave the way for MRI-based radiation treatment planning, leading to an improved accuracy in the overall radiation therapy process. It will streamline the treatment workflow for the MRI-guided radiation delivery systems under active development. With minimal modification, the proposed techniques can be applied to MR-based PET attenuation correction in PET/MR imaging. More broadly, the unifying Bayesian formalism can be used to improve current imaging biomarkers by integrating a wide variety of disparate information including anatomical and functional imaging such as perfusion/diffusion-weighted imaging and MR spectroscopic imaging. It will facilitate the incorporation of multimodality MRI into the entire process of cancer management: diagnosis, staging, radiation treatment planning, and treatment response assessment.
描述(申请人提供):CT是目前放射治疗计划的黄金标准。与CT相比,MRI提供了许多优势,包括提高了靶区描绘的准确性,减少了辐射暴露,简化了临床工作流程。有两个主要的技术障碍阻碍了基于MRI的放射治疗计划的临床应用:(1)几何失真,(2)缺乏电子密度信息。该项目的目标是开发新的图像分析和计算工具,以实现基于MRI的放射治疗计划。我们假设,如果应用适当的MR图像采集、重建和分析方法,可以从MRI获得准确的患者几何和电子密度信息。在目标1中,我们将通过最小化系统级和患者特定的失真来提高MRI的几何精度。为了保持足够的系统级精度,我们将执行全面的机器专用校准和持续的质量保证程序。为了纠正患者引起的扭曲,我们将开发新的计算工具,根据物理原理得出详细的磁场扭曲图,用于纠正磁化率引起的空间扭曲。在目标2中,我们将发展一种统一的贝叶斯方法,通过结合互补强度和几何信息来定量绘制电子密度图。通过利用多个患者图谱和具有差异对比的全景、多参数MRI,我们将应用机器学习技术将由强度和几何给出的信息编码为两个条件概率密度函数。这些将被组合成一个统一的后验概率密度函数,它在连续的尺度上提供最佳的电子密度。在目标3中,我们将从三个主要终点对MRI用于治疗计划的几何和剂量学准确性进行临床评估:(1)器官轮廓,(2)基于参考图像的患者设置,(3)以CT为基本事实的三维剂量分布(光子和质子)。这些评估将通过对多个疾病部位的患者研究进行,包括大脑、头颈部和前列腺。该项目的成功将为无失真磁共振成像提供可靠的、定量的电子密度信息。这将为基于MRI的放射治疗计划铺平道路,从而提高整个放射治疗过程的准确性。它将简化正在积极开发的核磁共振引导放射传递系统的治疗工作流程。该方法只需最小的修改,即可应用于PET/MR成像中基于MR的PET衰减校正。更广泛地说,统一的贝叶斯公式可以通过集成各种不同的信息来改进当前的成像生物标记物,包括解剖和功能成像,如灌注/扩散加权成像和磁共振光谱成像。它将促进将多模式核磁共振纳入癌症管理的整个过程:诊断、分期、放射治疗计划和治疗反应评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruijiang Li其他文献
Ruijiang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruijiang Li', 18)}}的其他基金
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10594058 - 财政年份:2018
- 资助金额:
$ 36.21万 - 项目类别:
Multiregional imaging phenotypes and molecular correlates of aggressive versus indolent breast cancer
侵袭性乳腺癌与惰性乳腺癌的多区域成像表型和分子相关性
- 批准号:
10332716 - 财政年份:2018
- 资助金额:
$ 36.21万 - 项目类别:
MRI-Based Radiation Therapy Treatment Planning
基于 MRI 的放射治疗治疗计划
- 批准号:
9197624 - 财政年份:2016
- 资助金额:
$ 36.21万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8921946 - 财政年份:2012
- 资助金额:
$ 36.21万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8279092 - 财政年份:2012
- 资助金额:
$ 36.21万 - 项目类别:
Real-Time Volumetric Imaging for Lung Cancer Radiotherapy
肺癌放射治疗的实时体积成像
- 批准号:
8521207 - 财政年份:2012
- 资助金额:
$ 36.21万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant














{{item.name}}会员




