2023 Physical Science of Cancer GRC/GRS
2023年癌症物理科学GRC/GRS
基本信息
- 批准号:10609179
- 负责人:
- 金额:$ 1.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-20 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBig DataBiologicalBiologyBiomedical EngineeringBiophysicsCancer BiologyCancer ScienceCancerousCellsChemistryCollaborationsCommunicationComplexComputational ScienceDataData ScienceDedicationsDevelopmentDiagnosticDisciplineDiseaseEngineeringEnvironmentExposure toFosteringFoundationsFunding AgencyFutureGeneticGoalsHearingHourHuman bodyIndividualInterdisciplinary StudyInternationalJournalsMalignant NeoplasmsMathematicsMedicineMentorshipMethodist ChurchMethodologyMethodsMinnesotaMolecularOncologyOralOrganParticipantPatientsPhysicsPostdoctoral FellowProductivityRecurrent diseaseResearchResearch PersonnelRoleScientistShapesSignal TransductionSiteSystemSystemic diseaseTechnologyTexasTimeTissuesTrainingTranslatingVirginiaVoiceWisconsinanticancer researchcancer typecareerclinical translationdesignexpectationgraduate studentindividual patientinnovationinterdisciplinary approachmathematical modelmechanical propertiesmeetingsmultidisciplinarynext generationnovelpersonalized diagnosticspersonalized medicinephysical propertyphysical sciencepostersprogramsrole modelsocialsuccesssymposiumsynergismtooltranslational approachtranslational potentialtumortumor initiationtumor microenvironmenttumor progressionunpublished works
项目摘要
Project Summary/Abstract
Despite the wide variety of genetic and molecular information available to characterize a patient's tumor, a
precise individual prediction of cancer progression is only possible to a limited extend. This suggests that vital
data about tumor progression are missing such as the physical and mechanical properties of cells and
surrounding tissue. Considering the complexity of cancer as a systemic disease recently high expectations
have been raised that an interdisciplinary approach by combining biology, chemistry, mathematics, engineering,
big data, and physics with biomedicine will lead to convergent oncology. Emergent phenomena which are not
directly triggered by a specific molecule can be only understood by a convergent approach. Partial support is
requested for the 3rd iteration of the "Physical Science of Cancer" Gordon Research Conference (GRC) to be
held from Feb.5-10, 2023, and the 2nd iteration of the “Physical Science of Cancer” Gordon Research Seminar
(GRS) to be held from Feb.4-5, 2023. These meetings will be held at the GRC-selected conference hotel (The
Grand Galvez) in Galveston, Texas. The conference is promised to provide a forum for the presentation and
discussion of recent advances and new ideas on multidisciplinary approaches and their success in
understanding fundamental cancer progression as well as in developing potential translational perspectives.
The long-term goal of this GRC is to facilitate the development and use of approaches to extend the range of
cancer targets that can be tackled successfully. These will be achieved with the following aims:
(1) Review advances and identify challenges in quantitative approaches in cancer.
(2) Train the next generation of scientists to quantitatively investigate the underlying physical mechanisms
that drive cancer (GRS) and facilitate diversity participation.
(3) Foster new collaborations with emphasis on using quantitative approaches to address challenges in
cancer.
Session topics have been selected on the basis of their potential impact on key scientific challenges of the field
and for their strength in transdisciplinary approaches. A focus on giving diverse voices, in background, stage
of career, and discipline will be central to our program. We will introduce inclusive mentorship as a primary
focus in order to better train and foster the next generation of multi-disciplinary cancer researchers. Poster
sessions will provide ample opportunities for engagement between investigators at all levels. We anticipate that
scientific interactions during this conference will impact cancer research in significant ways and result in
establishing productive multi-disciplinary research collaborations.
Collectively this conference will highlight the significant progress in the last four years, and catalyze the
development of new concepts and synergies that will aim to shape the future of Physical Sciences in Cancer
and allow us to holistically study phenomena. Ultimately, the dynamic interactions among these systems shape
the forces that drive tumor initiation, progression, metastatic spread, and disease recurrence. The application
of physics and mathematics foundations to the molecular, cellular, tissue, and organ level basis of cancer has
revealed fundamental changes during disease that are reflected across cancer types and stages. In this
conference we will hear from experts applying physical sciences to cancer to study disease phenomena across
scales and systems.
项目摘要/摘要
尽管有各种各样的遗传和分子信息可以用来表征患者的肿瘤,但
对癌症进展的准确个体预测只能在有限的范围内实现。这表明至关重要的是
关于肿瘤进展的数据缺失,如细胞的物理和机械特性以及
周围的组织。考虑到癌症作为一种系统性疾病的复杂性,最近人们对癌症的期望很高
已经提出了一种结合生物、化学、数学、工程学、
大数据、物理学和生物医学将导致肿瘤学的融合。没有出现的紧急现象
只有通过收敛的方法才能理解由特定分子直接触发的分子。部分支持是
要求举办第三次“癌症物理科学”戈登研究会议(GRC
2023年2月5日至10日,戈登研究研讨会第二次迭代举行
(GRS)将于2023年2月4日至5日举行。这些会议将在GRC选定的会议酒店(The
大加尔韦斯)在德克萨斯州加尔维斯顿。会议承诺为演讲提供论坛,并
讨论多学科方法的最新进展和新思想及其在
了解癌症的基本进展,以及开发潜在的翻译观点。
这一GRC的长期目标是促进开发和使用方法,以扩大
可以成功攻克的癌症靶点。实现这些目标的目标如下:
(1)回顾癌症定量方法的进展并确定挑战。
(2)培养下一代科学家,定量研究潜在的物理机制
这会导致癌症(GRS),并促进多样性参与。
(3)促进新的协作,强调使用量化方法来应对以下挑战
癌症。
会议主题的选择是基于它们对该领域关键科学挑战的潜在影响
以及他们在跨学科方法方面的优势。专注于在背景、舞台上发出不同的声音
职业和纪律将是我们计划的核心。我们将引入包容性导师制作为主要内容
重点是为了更好地培养和培养下一代多学科癌症研究人员。海报
会议将为各级调查人员之间的接触提供充足的机会。我们预料到
这次会议期间的科学互动将对癌症研究产生重大影响,并导致
建立富有成效的多学科研究合作。
总体而言,这次会议将突出过去四年的重大进展,并催化
旨在塑造癌症物理科学未来的新概念和协同效应的发展
使我们能够从整体上研究现象。最终,这些系统之间的动态相互作用将形成
驱动肿瘤启动、进展、转移扩散和疾病复发的力量。应用程序
从物理学和数学基础到癌症的分子、细胞、组织和器官水平的基础
揭示了疾病过程中反映在癌症类型和阶段上的根本性变化。在这
我们将听取将物理学应用于癌症以研究疾病现象的专家们的发言
规模和系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer M Munson其他文献
Jennifer M Munson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer M Munson', 18)}}的其他基金
Interstitial Fluid Flow Regulates Glioma Cell Invasion
间质液流动调节神经胶质瘤细胞侵袭
- 批准号:
10443221 - 财政年份:2022
- 资助金额:
$ 1.7万 - 项目类别:
Interstitial fluid flow in Alzheimer's Disease Progression
阿尔茨海默病进展中的间质液流动
- 批准号:
10185070 - 财政年份:2021
- 资助金额:
$ 1.7万 - 项目类别:
Interstitial Fluid Flow Regulates Glioma Cell Invasion
间质液流动调节神经胶质瘤细胞侵袭
- 批准号:
10057362 - 财政年份:2017
- 资助金额:
$ 1.7万 - 项目类别:
Interstitial Fluid Flow Regulates Glioma Cell Invasion
间质液流动调节神经胶质瘤细胞侵袭
- 批准号:
10297833 - 财政年份:2017
- 资助金额:
$ 1.7万 - 项目类别:
Interstitial Fluid Flow Regulates Glioma Cell Invasion
间质液流动调节神经胶质瘤细胞侵袭
- 批准号:
9425498 - 财政年份:2017
- 资助金额:
$ 1.7万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2022
- 资助金额:
$ 1.7万 - 项目类别:
Discovery Grants Program - Individual
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 1.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2021
- 资助金额:
$ 1.7万 - 项目类别:
Discovery Grants Program - Individual
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
DGECR-2020-00052 - 财政年份:2020
- 资助金额:
$ 1.7万 - 项目类别:
Discovery Launch Supplement
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2020
- 资助金额:
$ 1.7万 - 项目类别:
Discovery Grants Program - Individual
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761735 - 财政年份:2018
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761792 - 财政年份:2018
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761945 - 财政年份:2018
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
- 批准号:
1761839 - 财政年份:2018
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: DKM: Novel Out-of-core and Parallel Algorithms for Processing Biological Big Data
BIGDATA:F:DKA:DKM:用于处理生物大数据的新型核外并行算法
- 批准号:
1447711 - 财政年份:2014
- 资助金额:
$ 1.7万 - 项目类别:
Standard Grant