2023 Physical Science of Cancer GRC/GRS

2023年癌症物理科学GRC/GRS

基本信息

  • 批准号:
    10609179
  • 负责人:
  • 金额:
    $ 1.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-20 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Despite the wide variety of genetic and molecular information available to characterize a patient's tumor, a precise individual prediction of cancer progression is only possible to a limited extend. This suggests that vital data about tumor progression are missing such as the physical and mechanical properties of cells and surrounding tissue. Considering the complexity of cancer as a systemic disease recently high expectations have been raised that an interdisciplinary approach by combining biology, chemistry, mathematics, engineering, big data, and physics with biomedicine will lead to convergent oncology. Emergent phenomena which are not directly triggered by a specific molecule can be only understood by a convergent approach. Partial support is requested for the 3rd iteration of the "Physical Science of Cancer" Gordon Research Conference (GRC) to be held from Feb.5-10, 2023, and the 2nd iteration of the “Physical Science of Cancer” Gordon Research Seminar (GRS) to be held from Feb.4-5, 2023. These meetings will be held at the GRC-selected conference hotel (The Grand Galvez) in Galveston, Texas. The conference is promised to provide a forum for the presentation and discussion of recent advances and new ideas on multidisciplinary approaches and their success in understanding fundamental cancer progression as well as in developing potential translational perspectives. The long-term goal of this GRC is to facilitate the development and use of approaches to extend the range of cancer targets that can be tackled successfully. These will be achieved with the following aims: (1) Review advances and identify challenges in quantitative approaches in cancer. (2) Train the next generation of scientists to quantitatively investigate the underlying physical mechanisms that drive cancer (GRS) and facilitate diversity participation. (3) Foster new collaborations with emphasis on using quantitative approaches to address challenges in cancer. Session topics have been selected on the basis of their potential impact on key scientific challenges of the field and for their strength in transdisciplinary approaches. A focus on giving diverse voices, in background, stage of career, and discipline will be central to our program. We will introduce inclusive mentorship as a primary focus in order to better train and foster the next generation of multi-disciplinary cancer researchers. Poster sessions will provide ample opportunities for engagement between investigators at all levels. We anticipate that scientific interactions during this conference will impact cancer research in significant ways and result in establishing productive multi-disciplinary research collaborations. Collectively this conference will highlight the significant progress in the last four years, and catalyze the development of new concepts and synergies that will aim to shape the future of Physical Sciences in Cancer and allow us to holistically study phenomena. Ultimately, the dynamic interactions among these systems shape the forces that drive tumor initiation, progression, metastatic spread, and disease recurrence. The application of physics and mathematics foundations to the molecular, cellular, tissue, and organ level basis of cancer has revealed fundamental changes during disease that are reflected across cancer types and stages. In this conference we will hear from experts applying physical sciences to cancer to study disease phenomena across scales and systems.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer M Munson其他文献

Jennifer M Munson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer M Munson', 18)}}的其他基金

Interstitial Fluid Flow Regulates Glioma Cell Invasion
间质液流动调节神经胶质瘤细胞侵袭
  • 批准号:
    10443221
  • 财政年份:
    2022
  • 资助金额:
    $ 1.7万
  • 项目类别:
Interstitial fluid flow in Alzheimer's Disease Progression
阿尔茨海默病进展中的间质液流动
  • 批准号:
    10185070
  • 财政年份:
    2021
  • 资助金额:
    $ 1.7万
  • 项目类别:
Interstitial Fluid Flow Regulates Glioma Cell Invasion
间质液流动调节神经胶质瘤细胞侵袭
  • 批准号:
    10057362
  • 财政年份:
    2017
  • 资助金额:
    $ 1.7万
  • 项目类别:
Interstitial Fluid Flow Regulates Glioma Cell Invasion
间质液流动调节神经胶质瘤细胞侵袭
  • 批准号:
    10297833
  • 财政年份:
    2017
  • 资助金额:
    $ 1.7万
  • 项目类别:
Interstitial Fluid Flow Regulates Glioma Cell Invasion
间质液流动调节神经胶质瘤细胞侵袭
  • 批准号:
    9425498
  • 财政年份:
    2017
  • 资助金额:
    $ 1.7万
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
  • 批准号:
    RGPIN-2020-06325
  • 财政年份:
    2022
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Discovery Grants Program - Individual
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
  • 批准号:
    569312-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
  • 批准号:
    RGPIN-2020-06325
  • 财政年份:
    2021
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Discovery Grants Program - Individual
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
  • 批准号:
    DGECR-2020-00052
  • 财政年份:
    2020
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Discovery Launch Supplement
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
  • 批准号:
    RGPIN-2020-06325
  • 财政年份:
    2020
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Discovery Grants Program - Individual
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
  • 批准号:
    1761735
  • 财政年份:
    2018
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
  • 批准号:
    1761792
  • 财政年份:
    2018
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
  • 批准号:
    1761945
  • 财政年份:
    2018
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
Spokes: MEDIUM: SOUTH: Collaborative: Integrating Biological Big Data Research into Student Training and Education
辐条:中:南:协作:将生物大数据研究融入学生培训和教育
  • 批准号:
    1761839
  • 财政年份:
    2018
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: DKM: Novel Out-of-core and Parallel Algorithms for Processing Biological Big Data
BIGDATA:F:DKA:DKM:用于处理生物大数据的新型核外并行算法
  • 批准号:
    1447711
  • 财政年份:
    2014
  • 资助金额:
    $ 1.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了