Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
基本信息
- 批准号:RGPIN-2020-06325
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Background Cell metabolism consists of thousands of biochemical reactions needed to sustain vital cellular processes. The metabolic capabilities of a cell are constrained by the repertoire of enzymes expressed. Computational models such as genome-scale metabolic models integrate metabolism with gene expression to predict phenotype from genotype. Genome-scale metabolic models predict cell phenotype by formulating the metabolic response as an optimization model, driven by a biochemical goal (objective function) while being subject to constraints: physicochemical properties, thermodynamics, and gene regulation. These models have been applied successfully to produce valuable chemicals from renewable resources, and for knowledge advancement in the life sciences and bioengineering since the early 90s. Research program The ultimate goal of this research program is to develop computer-aided design (CAD) tools to predictively design genetically engineered cells for the production of chemicals, fuels, and biopharmaceuticals. A prerequisite is having accurate models of cell metabolism and gene expression. Recent modeling advances allow E. coli protein expression to be predicted with up to 85% coverage. However, for other biotechnologically important organisms like yeast or human cells, the higher biological complexity and relatively sparser mechanistic knowledge makes achieving such broad model scope challenging. This program develops new CAD and modeling tools for E. coli, yeast, and human cells. To address the vastly different biological complexity and available knowledge across these organisms, both data-driven and mechanistic (knowledge-driven) modeling approaches are developed. 1) For human cells, for which mechanistic knowledge is the sparsest, new algorithms learn optimization models directly from 'omics' data (transcriptomics, proteomics, fluxomics). 2) For yeast, a new multiscale model is constructed that integrates metabolism and gene expression. 3) For E. coli, for which we previously developed advanced mechanistic models, CAD tools are developed and used to produce valuable proteins using model-designed strains. The developed software will be distributed freely for the research community. Benefits to the research community and Canada 1) The modeling methods can be used to advance knowledge of any organism given omics data of multiple types. 2) The new cell design tools can be applied to multiple industries including biopharmaceutical manufacturing, and waste conversion to chemicals or fuels, and to multiple platform organisms (E. coli, yeast, human cell lines). 3) I will train highly qualified personnel in computational systems biology, genomics, and optimization algorithms.
背景细胞代谢包括维持重要细胞过程所需的数千种生化反应。细胞的代谢能力受到所表达的酶库的限制。计算模型,如基因组规模的代谢模型整合代谢与基因表达,从基因型预测表型。基因组规模的代谢模型通过将代谢反应制定为优化模型来预测细胞表型,该模型由生化目标(目标函数)驱动,同时受到物理化学性质,热力学和基因调控的约束。自90年代初以来,这些模型已成功应用于从可再生资源中生产有价值的化学品,以及生命科学和生物工程的知识进步。该研究计划的最终目标是开发计算机辅助设计(CAD)工具,以预测性地设计用于生产化学品,燃料和生物制药的基因工程细胞。一个先决条件是有精确的细胞代谢和基因表达模型。最近的建模进展允许E.大肠杆菌蛋白质表达预测高达85%的覆盖率。然而,对于其他生物技术上重要的生物体,如酵母或人类细胞,更高的生物复杂性和相对稀疏的机制知识使得实现如此广泛的模型范围具有挑战性。 该计划开发了新的CAD和建模工具,为E。大肠杆菌、酵母和人类细胞。为了解决这些生物体之间存在的巨大差异的生物复杂性和可用知识,开发了数据驱动和机械(知识驱动)建模方法。 1)对于人类细胞来说,机械知识是最重要的,新算法直接从“组学”数据(转录组学,蛋白质组学,通量组学)中学习优化模型。2)对于酵母,构建了一个新的多尺度模型,该模型集成了代谢和基因表达。3)大肠大肠杆菌,我们以前开发了先进的机械模型,CAD工具的开发和使用模型设计的菌株生产有价值的蛋白质。开发的软件将免费分发给研究界。对研究界和加拿大的好处1)建模方法可用于提高对给定多种类型组学数据的任何生物体的认识。2)新的细胞设计工具可以应用于多个行业,包括生物制药制造,废物转化为化学品或燃料,以及多个平台生物(E。大肠杆菌、酵母、人细胞系)。3)我将在计算系统生物学、基因组学和优化算法方面培养高素质的人才。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang, Laurence其他文献
Recent advances in genome-scale modeling of proteome allocation
- DOI:
10.1016/j.coisb.2021.04.002 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:3.7
- 作者:
Dahal, Sanjeev;Zhao, Jiao;Yang, Laurence - 通讯作者:
Yang, Laurence
Characterizing metabolic pathway diversification in the context of perturbation size
- DOI:
10.1016/j.ymben.2014.11.013 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:8.4
- 作者:
Yang, Laurence;Srinivasan, Shyamsundhar;Cluett, William R. - 通讯作者:
Cluett, William R.
Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling.
- DOI:
10.1186/1756-0500-3-125 - 发表时间:
2010-05-05 - 期刊:
- 影响因子:1.8
- 作者:
Garg, Srinath;Yang, Laurence;Mahadevan, Radhakrishnan - 通讯作者:
Mahadevan, Radhakrishnan
Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli
- DOI:
10.1371/journal.pcbi.1007525 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:4.3
- 作者:
Du, Bin;Yang, Laurence;Palsson, Bernhard O. - 通讯作者:
Palsson, Bernhard O.
What differentiates a stress response from responsiveness in general?
压力反应与一般反应有何不同?
- DOI:
10.1016/j.cels.2022.02.002 - 发表时间:
2022 - 期刊:
- 影响因子:9.3
- 作者:
Vogel, Christine;Balázsi, Gábor;Löwer, Alexander;Jiang, Caifu;Schmid, Amy K.;Sommer, Morten;Yang, Laurence;Münch, Christian;Wang, Andrew;Israni-Winger, Kavita - 通讯作者:
Israni-Winger, Kavita
Yang, Laurence的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang, Laurence', 18)}}的其他基金
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
DGECR-2020-00052 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Launch Supplement
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Machine Learning and Multiomics for Predictive Models and Biomarker Discovery in Preterm Infants.
用于早产儿预测模型和生物标志物发现的机器学习和多组学。
- 批准号:
10729640 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Deep Learning Models for Metabolomics Analysis
用于代谢组学分析的深度学习模型
- 批准号:
10552395 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
- 批准号:
10685949 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
- 批准号:
10400454 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
RGPIN-2020-06325 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Learning principles from the pyrenoid, a phase-separated organelle
学习类核蛋白(一种相分离细胞器)的原理
- 批准号:
10322382 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Learning principles from the pyrenoid, a phase-separated organelle
学习类核蛋白(一种相分离细胞器)的原理
- 批准号:
10544349 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Role of the steroid hormone ADIOL in learning and memory, aging, and neurodegeneration
类固醇激素 ADIOL 在学习和记忆、衰老和神经退行性疾病中的作用
- 批准号:
10231523 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Learning models of metabolism and gene expression from biological big data
从生物大数据中学习新陈代谢和基因表达模型
- 批准号:
DGECR-2020-00052 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Launch Supplement
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
- 批准号:
10413230 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别: