Advanced End-to-End Relation Extraction with Deep Neural Networks

使用深度神经网络进行高级端到端关系提取

基本信息

  • 批准号:
    10615695
  • 负责人:
  • 金额:
    $ 33.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Relations linking various biomedical entities constitute a crucial resource that enables biomedical data science applications and knowledge discovery. Relational information spans the translational science spectrum going from biology (e.g., protein–protein interactions) to translational bioinformatics (e.g., gene–disease associations), and eventually to clinical care (e.g., drug–drug interactions). Scientists report newly discovered relations in nat- ural language through peer-reviewed literature and physicians may communicate them in clinical notes. More recently, patients are also reporting side-effects and adverse events on social media. With exponential growth in textual data, advances in biomedical natural language processing (BioNLP) methods are gaining prominence for biomedical relation extraction (BRE) from text. Most current efforts in BRE follow a pipeline approach containing named entity recognition (NER), entity normalization (EN), and relation classification (RC) as subtasks. They typically suffer from error snowballing — errors in a component of the pipeline leading to more downstream errors — resulting in lower performance of the overall BRE system. This situation has lead to evaluation of different BRE substaks conducted in isolation. In this proposal we make a strong case for strictly end-to-end evaluations where relations are to be produced from raw text. We propose novel deep neural network architectures that model BRE in an end-to-end fashion and directly identify relations and corresponding entity spans in a single pass. We also extend our architectures to n-ary and cross-sentence settings where more than two entities may need to be linked even as the relation is expressed across multiple sentences. We also propose to create two new gold standard BRE datasets, one for drug–disease treatment relations and another first of a kind dataset for combination drug therapies. Our main hypothesis is that our end-to-end extraction models will yield supe- rior performance when compared with traditional pipelines. We test this through (1). intrinsic evaluations based on standard performance measures with several gold standard datasets and (2). extrinsic application oriented assessments of relations extracted with use-cases in information retrieval, question answering, and knowledge base completion. All software and data developed as part of this project will be made available for public use and we hope this will foster rigorous end-to-end benchmarking of BRE systems.
摘要

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved biomedical word embeddings in the transformer era.
Acquisition of a Lexicon for Family History Information: Bidirectional Encoder Representations From Transformers-Assisted Sublanguage Analysis.
获得家族史信息的词典获取:来自变形金刚辅助的串联分析的双向编码器表示。
  • DOI:
    10.2196/48072
  • 发表时间:
    2023-06-27
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Wang, Liwei;He, Huan;Wen, Andrew;Moon, Sungrim;Fu, Sunyang;Peterson, Kevin J.;Ai, Xuguang;Liu, Sijia;Kavuluru, Ramakanth;Liu, Hongfang
  • 通讯作者:
    Liu, Hongfang
An open natural language processing (NLP) framework for EHR-based clinical research: a case demonstration using the National COVID Cohort Collaborative (N3C).
  • DOI:
    10.1093/jamia/ocad134
  • 发表时间:
    2023-11-17
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Liu, Sijia;Wen, Andrew;Wang, Liwei;He, Huan;Fu, Sunyang;Miller, Robert;Williams, Andrew;Harris, Daniel;Kavuluru, Ramakanth;Liu, Mei;Abu-el-Rub, Noor;Schutte, Dalton;Zhang, Rui;Rouhizadeh, Masoud;Osborne, John D.;He, Yongqun;Topaloglu, Umit;Hong, Stephanie S.;Saltz, Joel H.;Schaffter, Thomas;Pfaff, Emily;Chute, Christopher G.;Duong, Tim;Haendel, Melissa A.;Fuentes, Rafael;Szolovits, Peter;Xu, Hua;Liu, Hongfang
  • 通讯作者:
    Liu, Hongfang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venkata Naga Ramakanth Kavuluru其他文献

Venkata Naga Ramakanth Kavuluru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Venkata Naga Ramakanth Kavuluru', 18)}}的其他基金

Fast and fine: NLP methods for near real-time and fine-grained overdose surveillance
快速而精细:用于近实时和细粒度过量监测的 NLP 方法
  • 批准号:
    10590000
  • 财政年份:
    2022
  • 资助金额:
    $ 33.27万
  • 项目类别:
Advanced End-to-End Relation Extraction with Deep Neural Networks
使用深度神经网络进行高级端到端关系提取
  • 批准号:
    10386881
  • 财政年份:
    2020
  • 资助金额:
    $ 33.27万
  • 项目类别:
Advanced End-to-End Relation Extraction with Deep Neural Networks
使用深度神经网络进行高级端到端关系提取
  • 批准号:
    10200889
  • 财政年份:
    2020
  • 资助金额:
    $ 33.27万
  • 项目类别:

相似海外基金

Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
  • 批准号:
    17K00727
  • 财政年份:
    2017
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
  • 批准号:
    9764503
  • 财政年份:
    2016
  • 资助金额:
    $ 33.27万
  • 项目类别:
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
  • 批准号:
    317469425
  • 财政年份:
    2016
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Research Grants
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
  • 批准号:
    1632562
  • 财政年份:
    2016
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
  • 批准号:
    1520137
  • 财政年份:
    2015
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
  • 批准号:
    26420620
  • 财政年份:
    2014
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
  • 批准号:
    22760469
  • 财政年份:
    2010
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了