LEAP Methods Core
LEAP 方法核心
基本信息
- 批准号:10623804
- 负责人:
- 金额:$ 45.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaCaringCharacteristicsClassificationClinicClinicalClinical DataClinical ManagementCollaborationsCollectionCommunitiesComparative Effectiveness ResearchDataData AnalysesData CollectionData SecurityData SetData SourcesDatabasesDecision MakingDevelopmentDisciplineElectronic Health RecordEmpirical ResearchEnsureEpidemiologyFundingGenerationsHealth InsuranceHealth PolicyHealth systemHealthcareIncubatorsInfrastructureKnowledgeLaboratoriesLeadLinkMachine LearningMassachusettsMedicineMental HealthMethodologyMethodsModelingNational Institute of Mental HealthOutcomePatientsPopulationProceduresProspective cohortPsychiatryPublic Health SchoolsRandomized, Controlled TrialsResearchResearch DesignResearch MethodologyResearch PersonnelResearch Project GrantsResourcesSecureServicesTechniquesTechnologyThinnessTimeTrainingTranslational ResearchWorkanalytical methodclinical databaseclinical predictorscompare effectivenesscomputerized toolscomputing resourcesdata integrationdata managementdata repositorydata resourcedata submissiondiverse dataearly psychosiseffective interventionfirst episode psychosishigh dimensionalityimprovedinnovationinsurance claimslarge datasetslongitudinal datasetmachine learning algorithmnovelrandomized trialresponsesocioeconomicsstatisticstheories
项目摘要
1. Abstract
The Methods Core of the LEAP Center will continue to work on a data platform that integrates information
obtained at different levels of care of First Episode Psychosis (FEP) patients and will develop the
computational tools that will allow Center investigators to access and analyze the integrated databases.
Specifically, the Methods Core will provide the methodological expertise for the application of state-of-the-art
machine leaning algorithms for clinical prediction, and for the application of cutting-edge causal inference
techniques for comparative effectiveness research. First, the Methods Core will provide the database
infrastructure to securely store, harmonize, link, manage, and analyze the high-dimensional databases that will
be used by Center investigators. These databases include detailed clinical, demographic, socioeconomic
information for each FEP patient, plus randomized controlled trial data, electronic health records and insurance
claims, and longitudinal datasets on clinics characteristics and services offered. Many of these data sources
have never been used for mental health research, either independently or in concert. We will create the only
U.S.-based consortium approaching a thousand FEP patients. Second, the Methods Core will ensure that
recent advances in clinical prediction and comparative effectiveness research can be applied to large
databases of FEP patients and will be an incubator of methodological research in response to the
requirements of the Center projects. It will serve as a platform for a synergistic collaboration between experts
in several disciplines—psychiatry, statistics, epidemiology, and health policy—who will engage in high-impact
studies to improve the clinical outcomes of FEP patients. Our project also provides a potential model for data
consolidation and expertise sharing across multiple NIMH Alacrity P50 Centers. In summary, the Methods
Core will support the data analysis activities throughout all projects, and will disseminate methodological
advances amongst the community of mental health researchers and will therefore function as a national
resource that facilitates the use of innovative methods beyond the Center investigators.
1.摘要
LEAP中心的方法核心将继续致力于整合信息的数据平台
获得不同层次的照顾首发精神病(FEP)患者,并将制定
这些计算工具将允许中心研究人员访问和分析综合数据库。
具体而言,方法核心将为应用最先进的方法提供方法学专业知识。
用于临床预测的机器学习算法,以及尖端因果推理的应用
比较有效性研究的技术。首先,方法核心将提供数据库
安全存储、协调、链接、管理和分析高维数据库的基础设施,
供中心研究人员使用。这些数据库包括详细的临床,人口统计,社会经济
每个FEP患者的信息,加上随机对照试验数据,电子健康记录和保险
索赔和关于诊所特征和提供的服务的纵向数据集。这些数据源中的许多
从来没有被用于心理健康研究,无论是独立的还是一致的。我们将创造唯一
美国--一个基于财团的方法接近一千FEP患者。第二,核心方法将确保
临床预测和比较有效性研究的最新进展可以应用于大规模
FEP患者的数据库,并将成为方法学研究的孵化器,以响应
中心项目的要求。它将成为专家之间协同合作的平台
在精神病学、统计学、流行病学和卫生政策等几个学科中,世卫组织将参与高影响力的
改善FEP患者临床结局的研究。我们的项目还提供了一个潜在的数据模型
在多个NIMH Alacrity P50中心之间进行整合和专业知识共享。总之,方法
核心方案将支持所有项目的数据分析活动,并将传播方法论,
在精神卫生研究人员社区中取得进展,因此将作为一个国家
这是一种资源,有助于使用中心研究人员以外的创新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIGUEL HERNAN其他文献
MIGUEL HERNAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIGUEL HERNAN', 18)}}的其他基金
Training Program in Comparative Effectiveness Research for Suicide Prevention
自杀预防比较有效性研究培训计划
- 批准号:
10403745 - 财政年份:2022
- 资助金额:
$ 45.69万 - 项目类别:
Training Program in Comparative Effectiveness Research for Suicide Prevention
自杀预防比较有效性研究培训计划
- 批准号:
10657452 - 财政年份:2022
- 资助金额:
$ 45.69万 - 项目类别:
Laboratory for Early Psychosis Research (LEAP)
早期精神病研究实验室 (LEAP)
- 批准号:
10376216 - 财政年份:2019
- 资助金额:
$ 45.69万 - 项目类别:
Laboratory for Early Psychosis Research (LEAP)
早期精神病研究实验室 (LEAP)
- 批准号:
10559013 - 财政年份:2019
- 资助金额:
$ 45.69万 - 项目类别:
Laboratory for Early Psychosis Research (LEAP)
早期精神病研究实验室 (LEAP)
- 批准号:
10001157 - 财政年份:2019
- 资助金额:
$ 45.69万 - 项目类别:
Comparative effectiveness of pharmacologic strategies to treat first episode psychosis
治疗首发精神病的药物策略的有效性比较
- 批准号:
10623806 - 财政年份:2019
- 资助金额:
$ 45.69万 - 项目类别:
Laboratory for Early Psychosis Research (LEAP)
早期精神病研究实验室 (LEAP)
- 批准号:
10623802 - 财政年份:2019
- 资助金额:
$ 45.69万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 45.69万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 45.69万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 45.69万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 45.69万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 45.69万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 45.69万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 45.69万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 45.69万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 45.69万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 45.69万 - 项目类别:
Standard Grant














{{item.name}}会员




