Organ-scale regulation of stem cell dynamics
干细胞动力学的器官尺度调控
基本信息
- 批准号:10622498
- 负责人:
- 金额:$ 39.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdultBiological ModelsBiologyCell DeathCell Differentiation processCellsComplexDrosophila genusEGF geneEpitheliumEquilibriumFeedbackFundingGoalsHealthHomeostasisHumanImaging TechniquesIndividualKineticsLife Cycle StagesMaintenanceMidgutOrganOrgan ModelOrgan SizeOutputPhenotypePopulationProcessPropertyRegulationResolutionSignal TransductionSmall IntestinesSourceSpatial DistributionStomachThinkingTight JunctionsTimeTissuesTubular formationWorkadult stem cellcell behaviorcell motilityflexibilitygraspimaging capabilitiesin vivoprecision geneticsprogramsrepairedsealself-renewalstem cell divisionstem cell modelstem cellsstemnesstool
项目摘要
PROJECT SUMMARY
Adult stem cells are the agents of organ renewal, remodeling and repair. Their hallmark ability to
concomitantly self-renew and produce terminal progeny enables lifelong maintenance of organ form and
function. At any given point in time, stem cells receive an ever-changing panoply of local and systemic signals
that reinforce stemness, activate division, or direct cellular fate as needed to respond to the tissue’s evolving
needs. These signals are deployed across space and time to marshal diverse stem cell behaviors for
coordinated, organ-scale outputs such as tissue homeostasis. Such emergent properties are fundamental to
the biology of adult tissues and essential for human health—yet, our grasp of their workings is rudimentary.
My lab seeks to uncover the cellular mechanisms that underlie the robustness and flexibility of adult organ
maintenance. The goal of our MIRA program is to build a comprehensive framework for understanding how
each individual cell is guided by local and systemic signals for a net result of cellular equilibrium at the organ
scale. Our model system is the adult Drosophila midgut, a stem cell-based, tubular epithelial organ that is
functionally equivalent to the vertebrate stomach and small intestine. Our approach leverages unique live
imaging capabilities—pioneered in our lab—and precision genetic tools to illuminate real-time cell dynamics in
vivo and to probe the mechanisms that tune these dynamics.
Here, we focus on three questions with broad significance to stem cell-based epithelial organs: 1) How
does the spatial distribution of stem cells––which we find is non-random, due to autonomous stem cell motility–
–impact the efficiency and robustness of organ turnover? 2) What are the real-time spatial kinetics of the EGF
feedback signals that equilibrate stem cell divisions and differentiated cell death, and does ectopic
manipulation of these kinetics support or negate a point-source model for organ size control? 3) How do new,
differentiating cells, which are born outside of the epithelium’s sealed network of occluding junctions, integrate
seamlessly into the organ as they differentiate?
These studies build upon and expand our R01-funded work on organ-scale stem cell dynamics. Since the
cellular life cycle is a universal feature of self-renewing organs, the tunable, population-level mechanisms that
we uncover in the Drosophila midgut will provide a template for thinking about more complex organs, including
those in humans.
项目摘要
成体干细胞是器官更新、重塑和修复的媒介。他们标志性的能力,
伴随自我更新和产生终末后代使得能够终身维持器官形式,
功能在任何给定的时间点,干细胞接收不断变化的局部和系统信号
加强干性,激活分裂,或根据需要指导细胞命运,以响应组织的进化
需求这些信号在空间和时间上被部署,以组织不同的干细胞行为,
协调的、器官规模的输出,如组织内稳态。这些涌现的特性对于
成人组织的生物学和对人类健康至关重要,然而,我们对它们的工作原理的理解是初步的。
我的实验室致力于揭示成人器官的坚固性和灵活性背后的细胞机制
上维护我们的MIRA计划的目标是建立一个全面的框架来了解如何
每个单独的细胞由局部和系统信号引导
规模我们的模型系统是成年果蝇中肠,一种基于干细胞的管状上皮器官,
在功能上等同于脊椎动物的胃和小肠。我们的方法利用独特的现场
成像能力-在我们的实验室开创-和精确的遗传工具,以阐明实时细胞动力学,
并探索调节这些动力学的机制。
在这里,我们集中在三个问题具有广泛意义的干细胞为基础的上皮器官:1)如何
干细胞的空间分布--我们发现是非随机的,这是由于干细胞的自主运动--
- 影响器官周转的效率和稳健性?2)什么是EGF的实时空间动力学
反馈信号,平衡干细胞分裂和分化的细胞死亡,
操纵这些动力学支持或否定了器官大小控制的点源模型?3)如何做新的,
在上皮封闭连接的封闭网络之外产生的分化细胞,
在它们分化的过程中无缝地进入器官
这些研究建立在并扩展了我们R 01资助的器官规模干细胞动力学工作的基础上。以来
细胞生命周期是自我更新器官的一个普遍特征,这种可调节的群体水平机制,
我们在果蝇中肠中发现的基因将为思考更复杂的器官提供模板,
那些在人类身上。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tissue Homeostasis and Non-Homeostasis: From Cell Life Cycles to Organ States.
- DOI:10.1146/annurev-cellbio-120420-114855
- 发表时间:2022-10-06
- 期刊:
- 影响因子:11.3
- 作者:O'Brien, Lucy Erin
- 通讯作者:O'Brien, Lucy Erin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucy Erin O'brien其他文献
Lucy Erin O'brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucy Erin O'brien', 18)}}的其他基金
Multiparametric deep tissue microscope for in vivo and in vitro imaging
用于体内和体外成像的多参数深层组织显微镜
- 批准号:
10426767 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Dynamic Mechanisms of Fate Control during Epithelial Organ Renewal
上皮器官更新过程中命运控制的动态机制
- 批准号:
9894811 - 财政年份:2016
- 资助金额:
$ 39.35万 - 项目类别:
Dynamic Mechanisms of Fate Control during Epithelial Organ Renewal
上皮器官更新过程中命运控制的动态机制
- 批准号:
9247213 - 财政年份:2016
- 资助金额:
$ 39.35万 - 项目类别:
Mechano-sensitive control of intestinal stem cell divisions in Drosophila.
果蝇肠道干细胞分裂的机械敏感控制。
- 批准号:
8809752 - 财政年份:2015
- 资助金额:
$ 39.35万 - 项目类别:
Mechano-sensitive control of intestinal stem cell divisions in Drosophila.
果蝇肠道干细胞分裂的机械敏感控制。
- 批准号:
8987560 - 财政年份:2015
- 资助金额:
$ 39.35万 - 项目类别:
Nutrient regulation of stem cell mediated intestinal renewal in Drosophila
干细胞介导的果蝇肠道更新的营养调节
- 批准号:
8215874 - 财政年份:2010
- 资助金额:
$ 39.35万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 39.35万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 39.35万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 39.35万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 39.35万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 39.35万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 39.35万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 39.35万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 39.35万 - 项目类别:














{{item.name}}会员




