Dynamic Mechanisms of Fate Control during Epithelial Organ Renewal
上皮器官更新过程中命运控制的动态机制
基本信息
- 批准号:9894811
- 负责人:
- 金额:$ 31.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAdultAnatomyAnimalsApicalArbitrationArchitectureBasement membraneBehaviorCell Differentiation processCell divisionCell surfaceCellsCollectionCuesDataDaughterDiseaseDrosophila genusDysplasiaEnsureEpithelialEpitheliumEquilibriumEventGeneticGoalsGrainHumanImageIndividualInvertebratesKnowledgeLabelLateralLeadLightLinkMaintenanceMediatingMethodologyMidgutModelingMolecularMothersNatureOrganOutcomePathologyPathway interactionsPhysiologicalProcessPropertyRegulationResolutionRoleSignal TransductionStructureTestingTherapeuticTimeTissuesVertebratesWorkadhesion receptoradult stem cellbasecell behaviorcell motilitycell typecombatdaughter cellepithelial stem cellexperimental studyextracellulargenetic manipulationimaging capabilitiesin vivoinnovationmovienotch proteinnovel therapeuticsorgan regenerationpromoterpublic health relevancereceptorstemstem cell biologystem cell divisionstem cell therapystem cellstissue degenerationtoolvirtual
项目摘要
DESCRIPTION (provided by applicant): Effective and safe stem cell therapies must build upon knowledge of how stem cells generate precise numbers of differentiated cells to meet the body's needs. In adult organ renewal, each stem cell division triggers a pivotal decision between asymmetric, symmetric-stem, and symmetric-terminal fates. To sustain constant numbers of stem and differentiated cells, these three fate outcomes must be collectively balanced. Conversely, dysplasia or degeneration arises if fate balance is lost. Yet in contrast to the well-studied pathways that execute fate outcomes, the upstream events that decide between fate outcomes are virtually unknown. Our long-term goal is to understand the mechanisms that arbitrate the organ-wide balance of division fates. Toward this goal, here we probe the cellular basis of symmetric and asymmetric fate decisions-in vivo and in real time-by combining live imaging with the versatile genetic tools of Drosophila. Using the adult Drosophila midgut, we have made a path breaking innovation by developing long-term imaging of epithelial renewal at high cellular resolution in live animals. Our methodology enables individual stem cell divisions to
be captured in their native context and fate decisions to be visualized in real time. We will investigate three fundamental questions about the cellular and molecular nature of fate decisions. In Aim 1, we ask whether fate decisions are made by the dividing mother stem cell, by equipotent daughter cells, or a combination. Using live imaging, we will directly test the mother-control mechanisms of oriented cell division and fate determinant partitioning, and the daughter-control mechanism of Notch-mediated lateral inhibition. We will evaluate whether different mechanisms bias toward different fates, and examine whether initial fate decisions can be overturned by later-acting mechanisms. Aim 2 builds upon exciting preliminary data those stem cells are motile, which provokes the question of whether motility influences fates by altering proximity to spatially localized signals. We will determine how motility impacts fate decisions, probe the interplay between motility and fate outcomes, and identify the cytoskeletal regulators that instigate motility. In Aim 3, we turn to the adhesion junctions that define epithelal architecture and ask how this multicellular adhesive network integrates into fate decisions. We will separately perturb basal, lateral, and apical adhesion receptors on stem, daughter, and differentiated neighbor cells and parse how distinct receptors on different cell surfaces influence
fate decision mechanisms and outcomes. Because epithelial stem cell biology and architecture are broadly conserved, the fate decision mechanisms uncovered here will potentially extend to epithelial organs in vertebrates, including humans. Ultimately, understanding the basic mechanisms that decide between division fates will open new therapeutic avenues to combat stem cell pathologies and promote organ regeneration.
描述(申请人提供):有效和安全的干细胞疗法必须建立在干细胞如何产生精确数量的分化细胞以满足人体需求的知识基础上。在成人器官更新中,每一次干细胞分裂都会在不对称、对称干细胞和对称末端命运之间触发一个关键的决定。为了维持干细胞和分化细胞的数量不变,这三种命运的结果必须共同平衡。相反,如果命运失去平衡,就会出现发育不良或退化。然而,与执行命运结果的经过充分研究的路径相比,决定命运结果的上游事件几乎是未知的。我们的长期目标是了解仲裁整个器官范围内分裂命运平衡的机制。为了实现这一目标,我们在这里通过将实时成像与果蝇的多种遗传工具相结合,在体内和实时探索对称和不对称命运决定的细胞基础。利用成年果蝇中肠,我们通过开发活体动物高细胞分辨率的上皮更新的长期成像,取得了一项开创性的创新。我们的方法使单个干细胞分裂能够
被捕捉到他们的原生环境和命运决定,以便实时可视化。我们将研究关于命运决定的细胞和分子性质的三个基本问题。在目标1中,我们询问命运是由分裂的母干细胞、等效子细胞还是两者的组合来决定的。利用实时成像,我们将直接测试定向细胞分裂和命运决定基因分割的母控机制,以及Notch介导的侧向抑制的子控机制。我们将评估不同的机制是否偏向不同的命运,并检查最初的命运决定是否可以被后来的作用机制推翻。目标2建立在令人兴奋的初步数据基础上,这些干细胞是可移动的,这引发了这样一个问题:移动性是否通过改变与空间定位信号的接近来影响命运。我们将确定运动如何影响命运的决定,探索运动和命运结果之间的相互作用,并确定刺激运动的细胞骨架调节因子。在目标3中,我们转向定义上皮结构的黏附连接,并询问这种多细胞黏附网络如何整合到命运决定中。我们将分别干扰干细胞、子代细胞和分化的相邻细胞上的基础、侧向和顶端黏附受体,并分析不同细胞表面上不同的受体如何影响
命运决定机制和结果。由于上皮干细胞的生物学和结构是广泛保守的,这里发现的命运决定机制可能会延伸到脊椎动物的上皮器官,包括人类。最终,了解决定分裂命运的基本机制将为对抗干细胞病理和促进器官再生开辟新的治疗途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucy Erin O'brien其他文献
Lucy Erin O'brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucy Erin O'brien', 18)}}的其他基金
Multiparametric deep tissue microscope for in vivo and in vitro imaging
用于体内和体外成像的多参数深层组织显微镜
- 批准号:
10426767 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Dynamic Mechanisms of Fate Control during Epithelial Organ Renewal
上皮器官更新过程中命运控制的动态机制
- 批准号:
9247213 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
Mechano-sensitive control of intestinal stem cell divisions in Drosophila.
果蝇肠道干细胞分裂的机械敏感控制。
- 批准号:
8809752 - 财政年份:2015
- 资助金额:
$ 31.6万 - 项目类别:
Mechano-sensitive control of intestinal stem cell divisions in Drosophila.
果蝇肠道干细胞分裂的机械敏感控制。
- 批准号:
8987560 - 财政年份:2015
- 资助金额:
$ 31.6万 - 项目类别:
Nutrient regulation of stem cell mediated intestinal renewal in Drosophila
干细胞介导的果蝇肠道更新的营养调节
- 批准号:
8215874 - 财政年份:2010
- 资助金额:
$ 31.6万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Investment Accelerator














{{item.name}}会员




