Dynamic Mechanisms of Fate Control during Epithelial Organ Renewal

上皮器官更新过程中命运控制的动态机制

基本信息

  • 批准号:
    9247213
  • 负责人:
  • 金额:
    $ 31.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Effective and safe stem cell therapies must build upon knowledge of how stem cells generate precise numbers of differentiated cells to meet the body's needs. In adult organ renewal, each stem cell division triggers a pivotal decision between asymmetric, symmetric-stem, and symmetric-terminal fates. To sustain constant numbers of stem and differentiated cells, these three fate outcomes must be collectively balanced. Conversely, dysplasia or degeneration arises if fate balance is lost. Yet in contrast to the well-studied pathways that execute fate outcomes, the upstream events that decide between fate outcomes are virtually unknown. Our long-term goal is to understand the mechanisms that arbitrate the organ-wide balance of division fates. Toward this goal, here we probe the cellular basis of symmetric and asymmetric fate decisions-in vivo and in real time-by combining live imaging with the versatile genetic tools of Drosophila. Using the adult Drosophila midgut, we have made a path breaking innovation by developing long-term imaging of epithelial renewal at high cellular resolution in live animals. Our methodology enables individual stem cell divisions to be captured in their native context and fate decisions to be visualized in real time. We will investigate three fundamental questions about the cellular and molecular nature of fate decisions. In Aim 1, we ask whether fate decisions are made by the dividing mother stem cell, by equipotent daughter cells, or a combination. Using live imaging, we will directly test the mother-control mechanisms of oriented cell division and fate determinant partitioning, and the daughter-control mechanism of Notch-mediated lateral inhibition. We will evaluate whether different mechanisms bias toward different fates, and examine whether initial fate decisions can be overturned by later-acting mechanisms. Aim 2 builds upon exciting preliminary data those stem cells are motile, which provokes the question of whether motility influences fates by altering proximity to spatially localized signals. We will determine how motility impacts fate decisions, probe the interplay between motility and fate outcomes, and identify the cytoskeletal regulators that instigate motility. In Aim 3, we turn to the adhesion junctions that define epithelal architecture and ask how this multicellular adhesive network integrates into fate decisions. We will separately perturb basal, lateral, and apical adhesion receptors on stem, daughter, and differentiated neighbor cells and parse how distinct receptors on different cell surfaces influence fate decision mechanisms and outcomes. Because epithelial stem cell biology and architecture are broadly conserved, the fate decision mechanisms uncovered here will potentially extend to epithelial organs in vertebrates, including humans. Ultimately, understanding the basic mechanisms that decide between division fates will open new therapeutic avenues to combat stem cell pathologies and promote organ regeneration.
 描述(由申请人提供):有效和安全的干细胞疗法必须建立在干细胞如何产生精确数量的分化细胞以满足身体需要的知识基础上。在成体器官更新中,每次干细胞分裂都会触发不对称、干细胞-干细胞和干细胞-终末命运之间的关键决定。为了维持干细胞和分化细胞的恒定数量,这三种命运结果必须共同平衡。相反,如果失去命运平衡,就会出现发育不良或退化。然而,与执行命运结果的已被充分研究的途径相反,决定命运结果的上游事件几乎是未知的。 我们的长期目标是了解仲裁器官范围内分裂命运平衡的机制。为了实现这一目标,在这里,我们探测对称和不对称的命运决定的细胞基础-在体内和真实的时间-通过结合活体成像与果蝇的通用遗传工具。利用成年果蝇中肠,我们通过在活体动物中以高细胞分辨率开发上皮更新的长期成像,做出了开创性的创新。我们的方法使单个干细胞分裂, 在他们的自然环境中被捕获,命运决定被真实的时间可视化。 我们将探讨三个基本问题的细胞和分子的性质的命运决定。在目标1中,我们问命运决定是由分裂的母干细胞,由等能的子细胞,或组合。使用实时成像,我们将直接测试定向细胞分裂和命运决定子分配的母控机制,以及Notch介导的侧抑制的子控机制。我们将评估不同的机制是否偏向于不同的命运,并研究是否最初的命运决定可以推翻后作用机制。目标2建立在令人兴奋的初步数据基础上,这些干细胞是能动的,这引发了一个问题,即能动性是否通过改变与空间定位信号的接近程度来影响命运。我们将确定运动如何影响命运的决定,探测运动和命运的结果之间的相互作用,并确定细胞骨架调节剂,煽动运动。在目标3中,我们转向定义上皮结构的粘附连接,并询问这种多细胞粘附网络如何整合到命运决定中。我们将分别干扰干细胞、子细胞和分化的相邻细胞上的基底、侧向和顶端粘附受体,并分析不同细胞表面上的不同受体如何影响 命运决定机制和结果。由于上皮干细胞的生物学和结构是广泛保守的,这里发现的命运决定机制将有可能扩展到脊椎动物,包括人类的上皮器官。最终,了解决定分裂命运的基本机制将开辟新的治疗途径,以对抗干细胞病理学和促进器官再生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucy Erin O'brien其他文献

Lucy Erin O'brien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucy Erin O'brien', 18)}}的其他基金

Multiparametric deep tissue microscope for in vivo and in vitro imaging
用于体内和体外成像的多参数深层组织显微镜
  • 批准号:
    10426767
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
Organ-scale regulation of stem cell dynamics
干细胞动力学的器官尺度调控
  • 批准号:
    10622498
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
Mechanisms of Physiological Organ Shrinkage
生理器官萎缩的机制
  • 批准号:
    10375998
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
Organ-scale regulation of stem cell dynamics
干细胞动力学的器官尺度调控
  • 批准号:
    10399573
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
Organ-scale regulation of stem cell dynamics
干细胞动力学的器官尺度调控
  • 批准号:
    10206913
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
Mechanisms of Physiological Organ Shrinkage
生理器官萎缩的机制
  • 批准号:
    10494209
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
Dynamic Mechanisms of Fate Control during Epithelial Organ Renewal
上皮器官更新过程中命运控制的动态机制
  • 批准号:
    9894811
  • 财政年份:
    2016
  • 资助金额:
    $ 31.6万
  • 项目类别:
Mechano-sensitive control of intestinal stem cell divisions in Drosophila.
果蝇肠道干细胞分裂的机械敏感控制。
  • 批准号:
    8809752
  • 财政年份:
    2015
  • 资助金额:
    $ 31.6万
  • 项目类别:
Mechano-sensitive control of intestinal stem cell divisions in Drosophila.
果蝇肠道干细胞分裂的机械敏感控制。
  • 批准号:
    8987560
  • 财政年份:
    2015
  • 资助金额:
    $ 31.6万
  • 项目类别:
Nutrient regulation of stem cell mediated intestinal renewal in Drosophila
干细胞介导的果蝇肠道更新的营养调节
  • 批准号:
    8215874
  • 财政年份:
    2010
  • 资助金额:
    $ 31.6万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
  • 批准号:
    2409620
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
  • 批准号:
    2403716
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
  • 批准号:
    23H01718
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
  • 批准号:
    EP/W019450/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
  • 批准号:
    10062336
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Collaborative R&D
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
  • 批准号:
    2323317
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Continuing Grant
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
  • 批准号:
    10677869
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
  • 批准号:
    10746743
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
Mechanisms of Blood Clot Adhesion and the Design of New Wet Adhesives
血凝块粘附机制及新型湿粘合剂的设计
  • 批准号:
    RGPIN-2018-04918
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了