Regulation of Spore Germination in Clostridioides difficile
艰难梭菌孢子萌发的调控
基本信息
- 批准号:10743652
- 负责人:
- 金额:$ 33.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-10 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffinityAmino AcidsBacteriaBacterial SporesBile AcidsBindingBinding ProteinsBiochemicalBypassCell physiologyClostridium difficileComplexDataDevelopmentDiseaseEnzymesEquilibriumFamilyFundingGenetic ScreeningGerminationHealthcare SystemsHeterodimerizationHomodimerizationIn VitroInfectionLifeLytA enzymeMediatingMembraneModelingMolecularMutationMutation AnalysisN-terminalNutrientPeptide HydrolasesProteinsRecurrenceRegulationReproduction sporesRoleSerine ProteaseSignal TransductionSignaling MoleculeStructureSubtilisinsTestingWorkcostflexibilitygenetic analysisgenetic approachinsightnovelpathogenprematurepreventprotein functionprotein protein interactionreceptorresponsesmall molecule
项目摘要
Germination is essential for many spore-forming bacteria to initiate disease. Spores of the nosocomial pathogen
Clostridioides difficile induce germination when they sense bile acid (germinants) combined with amino acids
and/or Ca2+ (co-germinants). C. difficile senses these small molecules using a mechanism that is distinct from
previously studied spore-formers because it lacks the transmembrane germinant receptors encoded by all other
spore-formers. Instead, C. difficile uses two soluble proteins of the clostridial serine protease family, CspC and
CspA, to sense germinant and co-germinant signals. While most Csps are active proteases, C. difficile CspC
and CspA are pseudoproteases due to mutations in their catalytic triads. Despite their lack of catalytic activity,
the CspC and CspA pseudoproteases control the activity of a related protease, CspB, during germination. While
CspC and CspA were identified as the likely bile acid germinant and co-germinant receptors, respectively,
through genetic screens, we unexpectedly discovered in the past funding period that CspC not only senses bile
acid germinant but also co-germinant signals. These findings raise the question as to how CspC and CspA
integrate signals from such different small molecules, especially since we lack biochemical evidence that either
of these proteins binds any of these signaling molecules.
We recently gained biochemical insight into this question by demonstrating that CspC and CspA directly
interact. We also determined that CspA forms a homodimer, in contrast with CspC, by solving CspA’s crystal
structure. Intriguingly, when we model CspC onto our unpublished structure of CspA, CspC residues that control
the sensitivity of C. difficile spores to germinants and/or co-germinants cluster to the predicted CspC:CspA
heterodimerization interface. These data lead us to hypothesize that germinant and co-germinant signals alter
the equilibrium between CspC:CspA heterodimers and CspA homodimers. Since CspA is also needed for CspC
to be stably incorporated into spores, we propose that a partner-swap mechanism regulates C. difficile spore
germination. According to this model, CspC:CspA heterodimerization allows CspC to be stably incorporated into
dormant spores. The inactive heterodimer is disrupted upon germinant and co-germinant addition, which triggers
germination potentially by promoting CspA homodimerization. We will test this model by evaluating the functional
significance of CspC:CspA heterodimerization and CspA homodimerization (Aim 1) and the impact of germinants
and co-germinants on these protein:protein interactions (Aim 2). We will also determine the role of CspA’s
unstructured prodomain in regulating the equilibrium between CspA homodimers and CspC:CspA heterodimers
in the presence of germinant and co-germinant signals (Aim 3). Collectively, these analyses will provide atomic-
level insight into how C. difficile spores transduce germinant and co-germinant signals to induce germination.
They will also reveal novel mechanisms for how pseudoenzymes, which are ubiquitous and conserved across
all three domains of life, control the activity of cognate enzymes in response to small molecules.
萌发是许多孢子形成细菌引发疾病的必要条件。医院病原体的孢子
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protocol for quantifying the germination properties of individual bacterial endospores using PySpore.
- DOI:10.1016/j.xpro.2023.102678
- 发表时间:2023-12-15
- 期刊:
- 影响因子:0
- 作者:Ribis, John W.;Shen, Aimee
- 通讯作者:Shen, Aimee
Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes.
- DOI:10.1016/j.mib.2015.01.006
- 发表时间:2015-04
- 期刊:
- 影响因子:5.4
- 作者:Fimlaid KA;Shen A
- 通讯作者:Shen A
SpoIIID-mediated regulation of σK function during Clostridium difficile sporulation.
- DOI:10.1111/mmi.12856
- 发表时间:2015-01
- 期刊:
- 影响因子:3.6
- 作者:Pishdadian K;Fimlaid KA;Shen A
- 通讯作者:Shen A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aimee Shen其他文献
Aimee Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aimee Shen', 18)}}的其他基金
Linking Gene Expression Profiles to Cell Fate in Clostridioides difficile Using Time-Lapse Microscopy
使用延时显微镜将基因表达谱与艰难梭菌细胞命运联系起来
- 批准号:
10330034 - 财政年份:2021
- 资助金额:
$ 33.38万 - 项目类别:
Linking Gene Expression Profiles to Cell Fate in Clostridioides difficile Using Time-Lapse Microscopy
使用延时显微镜将基因表达谱与艰难梭菌细胞命运联系起来
- 批准号:
10223787 - 财政年份:2021
- 资助金额:
$ 33.38万 - 项目类别:
Identifying Factors That Control Germinant Sensitivity During Clostridium Difficile Spore Germination
确定艰难梭菌孢子萌发过程中控制萌发敏感性的因素
- 批准号:
9293255 - 财政年份:2016
- 资助金额:
$ 33.38万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 33.38万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 33.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 33.38万 - 项目类别: