Spore Assembly in Clostridioides difficile
艰难梭菌中的孢子组装
基本信息
- 批准号:10365431
- 负责人:
- 金额:$ 43.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-14 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnaerobic BacteriaAntibioticsBacillus subtilisBacteriaBindingCell WallCell divisionCephamycinsChimeric ProteinsClostridium difficileDataDependenceDiseaseEnzymesFoundationsFrequenciesGenetic TranscriptionGrowthHealth Care CostsHealthcare SystemsHumanIndividualInfectionLeadLocationMedialMediatingMembraneMetabolicMolecularMorphologyMusMutagenesisNosocomial InfectionsPatientsPenicillin-Binding ProteinsPeptidoglycanPeptidyltransferasePlayProteinsRecurrenceReporterReproduction sporesResistanceRoleTestingTherapeuticThickUnited StatesVancomycinWorkbasecell growthcostdisease transmissioneffective therapyexperienceglycosyltransferasegut dysbiosishealthcare-associated infectionsinhibitor/antagonistinsightnovelpreventprotein functionprotein protein interactionrecurrent infectionresponsestandard of carestressortransmission process
项目摘要
Clostridioides difficile is the leading cause of nosocomial infections in the United States and costs
the healthcare system an estimated $5 billion/yr. C. difficile infections are costly and difficult to treat
because they recur at high frequency (~20%). Disease recurrence depends on C. difficile’s ability to form
metabolically dormant spores because they are the transmissive form of this obligate anaerobe. Recent
studies in mice have shown that preventing spore formation can break the damaging cycle of recurrent
infection that characterizes C. difficile disease. While blocking spore formation with cephamycins can
prevent recurrence in mice when combined with vancomycin, the current standard-of-care, cephamycins
can sensitize humans to C. difficile infections by exacerbating gut dysbiosis. Thus, anti-sporulation
therapies that selectively target C. difficile are needed. Developing such therapies, however, will require
a deeper understanding of how C. difficile assembles a spore.
Cephamycins block spore formation by inhibiting SpoVD, a sporulation-induced penicillin-binding
protein. In Bacillus subtilis, SpoVD works in concert with the SpoVE glycosyltransferase and SpoVB
flippase to synthesize a thick, protective layer of spore peptidoglycan (PG) known as the cortex. While
we confirmed that C. difficile cortex synthesis requires these three factors, we unexpectedly found that C.
difficile SpoVD and SpoVE regulate the earliest stage of spore formation, asymmetric division. We also
identified sporulation-induced, divisome-like proteins that regulate asymmetric division. These results
strongly suggest that C. difficile uses a unique sporulation-induced PG synthesis machine to synthesize
polar septa; this machinery could be selectively targeted to prevent spore formation.
Our data further suggest that C. difficile uses a distinct PG synthesis machinery to synthesize
medial septa during vegetative cell division because the divisome components we have identified are
dispensable in C. difficile, despite being essential in all other bacteria studied to date. Interestingly,
sporulation-induced SpoVD may modulate vegetative cell division because loss of SpoVD sensitizes C.
difficile to cephamycin antibiotics during broth culture. Based on these findings, this proposal seeks to
determine how C. difficile regulates polar septum formation during sporulation and how it uses some of
these components to enhance C. difficile’s resistance to cell wall antibiotics during vegetative growth.
Completing these aims will define an important new mechanism by which C. difficile assembles
infectious spores, lay the foundation for developing C. difficile-specific anti-sporulation therapies, and
reveal novel mechanisms that contribute to C. difficile’s high level of resistance to cell wall antibiotics.
艰难梭菌是美国医院感染的主要原因及其造成的费用
医疗保健系统估计每年花费 50 亿美元。艰难梭菌感染成本高昂且难以治疗
因为它们的复发频率很高(~20%)。疾病复发取决于艰难梭菌的形成能力
代谢休眠孢子,因为它们是这种专性厌氧菌的传播形式。最近的
对小鼠的研究表明,防止孢子形成可以打破复发性孢子的破坏性循环
艰难梭菌疾病特征的感染。虽然用头霉素阻断孢子形成可以
与当前标准治疗万古霉素、头霉素联合使用可预防小鼠复发
可以通过加剧肠道菌群失调而使人类对艰难梭菌感染敏感。因此,抗孢子形成
需要选择性针对艰难梭菌的疗法。然而,开发此类疗法需要
更深入地了解艰难梭菌如何组装孢子。
头霉素通过抑制 SpoVD(孢子形成诱导的青霉素结合)来阻止孢子形成
蛋白质。在枯草芽孢杆菌中,SpoVD 与 SpoVE 糖基转移酶和 SpoVB 协同作用
翻转酶合成厚厚的孢子肽聚糖(PG)保护层,称为皮质。尽管
我们证实艰难梭菌皮质合成需要这三个因素,我们意外地发现C. difficile 皮质合成需要这三个因素。
艰难梭菌 SpoVD 和 SpoVE 调节孢子形成的最早阶段,即不对称分裂。我们也
鉴定出孢子形成诱导的、调节不对称分裂的分裂体样蛋白质。这些结果
强烈建议艰难梭菌使用独特的孢子诱导PG合成机器来合成
极隔;这种机制可以选择性地针对防止孢子形成。
我们的数据进一步表明艰难梭菌使用独特的 PG 合成机制来合成
营养细胞分裂期间的内侧隔膜,因为我们已经确定的分裂成分是
尽管在迄今为止研究的所有其他细菌中都是必需的,但在艰难梭菌中却是可有可无的。有趣的是,
孢子形成诱导的 SpoVD 可能会调节营养细胞分裂,因为 SpoVD 的丧失会使 C.
肉汤培养过程中艰难梭菌对头霉素抗生素的影响。基于这些发现,该提案旨在
确定艰难梭菌在孢子形成过程中如何调节极隔膜的形成以及它如何使用一些
这些成分可增强艰难梭菌在营养生长过程中对细胞壁抗生素的抵抗力。
完成这些目标将定义艰难梭菌组装的重要新机制
传染性孢子,为开发艰难梭菌特异性抗孢子形成疗法奠定基础,以及
揭示了导致艰难梭菌对细胞壁抗生素具有高水平耐药性的新机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aimee Shen其他文献
Aimee Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aimee Shen', 18)}}的其他基金
Linking Gene Expression Profiles to Cell Fate in Clostridioides difficile Using Time-Lapse Microscopy
使用延时显微镜将基因表达谱与艰难梭菌细胞命运联系起来
- 批准号:
10330034 - 财政年份:2021
- 资助金额:
$ 43.74万 - 项目类别:
Linking Gene Expression Profiles to Cell Fate in Clostridioides difficile Using Time-Lapse Microscopy
使用延时显微镜将基因表达谱与艰难梭菌细胞命运联系起来
- 批准号:
10223787 - 财政年份:2021
- 资助金额:
$ 43.74万 - 项目类别:
Identifying Factors That Control Germinant Sensitivity During Clostridium Difficile Spore Germination
确定艰难梭菌孢子萌发过程中控制萌发敏感性的因素
- 批准号:
9293255 - 财政年份:2016
- 资助金额:
$ 43.74万 - 项目类别:
Regulation of Spore Germination in Clostridioides difficile
艰难梭菌孢子萌发的调控
- 批准号:
10743652 - 财政年份:2014
- 资助金额:
$ 43.74万 - 项目类别:
相似海外基金
Identification and isolation of anaerobic bacteria that degrade bacterial cell wall
降解细菌细胞壁的厌氧菌的鉴定与分离
- 批准号:
22H02487 - 财政年份:2022
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enzymology of cofactor and amino acid metabolism in anaerobic bacteria
厌氧菌辅助因子和氨基酸代谢的酶学
- 批准号:
RGPIN-2022-03200 - 财政年份:2022
- 资助金额:
$ 43.74万 - 项目类别:
Discovery Grants Program - Individual
Elucidating the mechanisms of O2-sensitivity of anaerobic bacteria Bifidobacterium.
阐明厌氧菌双歧杆菌的 O2 敏感性机制。
- 批准号:
22K07058 - 财政年份:2022
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-throughput isolation of anaerobic bacteria
厌氧菌的高通量分离
- 批准号:
572711-2022 - 财政年份:2022
- 资助金额:
$ 43.74万 - 项目类别:
University Undergraduate Student Research Awards
Automatic and accurate identification of aerobic bacteria, anaerobic bacteria, yeasts, and fungi in clinical samples derived from animals and from feed for pets
自动、准确地鉴定来自动物和宠物饲料的临床样品中的需氧细菌、厌氧细菌、酵母菌和真菌
- 批准号:
10440741 - 财政年份:2021
- 资助金额:
$ 43.74万 - 项目类别:
Regulation of virulence in fungi under coculture condition with anaerobic bacteria
厌氧菌共培养条件下真菌毒力的调节
- 批准号:
21K07009 - 财政年份:2021
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polymicrobial interactions between commensal obligate anaerobic bacteria and cystic fibrosis pathogen P. aeruginosa
共生专性厌氧菌与囊性纤维化病原体铜绿假单胞菌之间的多种微生物相互作用
- 批准号:
10275319 - 财政年份:2021
- 资助金额:
$ 43.74万 - 项目类别:
Platform for the automated isolation and characterization of anaerobic bacteria
厌氧菌自动分离和表征平台
- 批准号:
445552570 - 财政年份:2020
- 资助金额:
$ 43.74万 - 项目类别:
Major Research Instrumentation
Development of therapy for triple negative breast cancer using anaerobic bacteria
利用厌氧菌开发三阴性乳腺癌疗法
- 批准号:
19K16452 - 财政年份:2019
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of gene engineering method for anaerobic bacteria for efficient bio-hydrogen production
开发厌氧菌高效生物制氢的基因工程方法
- 批准号:
18K11708 - 财政年份:2018
- 资助金额:
$ 43.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)