Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
基本信息
- 批准号:10400835
- 负责人:
- 金额:$ 33.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-03 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAddressAdoptedAlgorithmsAttentionBehaviorBehavioralBlood PressureBody mass indexClinical TrialsCommunitiesComputer softwareDataDevicesEnvironmentFastingGaussian modelGoldHealthHourHumanHyperlipidemiaHypertensionInflammationInsulin ResistanceKnowledgeLinkLipidsMachine LearningMeasurementMeasuresMethodsModelingMonitorMovementNatureNon-Insulin-Dependent Diabetes MellitusObesityOutcomeParticipantPatternPersonal SatisfactionPersonsPhysical activityPublic HealthResearchRisk FactorsSamplingSecuritySeriesSignal TransductionSleepTimeValidationVisualizationbasecardiovascular healthcardiovascular risk factordata resourcediabetes riskdigitalhealth dataimprovedinsightinstrumentinterestlearning algorithmmachine learning methodmarkov modelmonitoring devicenovelobesity in childrenopen sourcepreventpublic health relevancesedentarysedentary lifestylesimulationsleep behaviorsleep patternstandard measurestatistical and machine learningtooluser friendly softwarewaist circumferencewearable device
项目摘要
PROJECT SUMMARY
We propose novel statistical and machine learning methods for processing and analyzing accelerometer data
for studying physical activity, sedentary behavior, and sleep and their effects on outcomes such as
cardiovascular health. Methods to accurately estimate and characterize physical activity, sedentary
behavior and sleep are crucially needed. Accelerometers have been widely adopted as the standard
objective measure of movement in free-living humans. Recent advances have spawned instruments that
collect enormous amounts of data that has far outpaced the research community’s ability to meaningfully
interpret them. Current studies rely on outdated methods for identifying non-wear and addressing missing data,
potentially yielding biased and inefficient estimates of relationships between behavioral activity
patterns and outcomes. Importantly, methods for distinguishing between non-wear periods and those that
represent sedentary behavior or sleep have not been validated using a gold standard in free-living contexts.
The handling of non-wear periods using a statistically valid approach that exploits the multivariate and time-
series nature of the data has yet to be developed. Thus, new methods are needed to address current gaps.
We propose developing and validating an ensemble classifier to distinguish non-wear time. We will adapt and
validate multiple imputation methods that exploit the multivariate and time-series nature of the data to handle
non-wear time in analyses that make use of entire profiles of physical activity. Specifically, we will evaluate
methods for incorporating multiple imputation for handling missing data from non-wear when applying adaptive
clustering algorithms to identify distinct patterns of sleep and activity in order to relate them to outcomes in a
generalized linear mixed effects model framework. We will create open-source user-friendly software that can
be adopted and enhanced by the research community. Our approach integrates three novel data resources to
develop our methods – two with knowledge of true activity and non-wear, and a third generated from a unique
four-year longitudinal time series for both accelerometry and cardiovascular risk factor measures in a real-
world setting. It offers an opportunity to develop and illustrate methods using data generated from wearable
devices in a natural environment that includes missing data. This is the first study to incorporate missing data
methods into learning algorithms under a generalized linear mixed effects model framework for accelerometer
studies. Such methods will be critical for both observational and clinical trial research in real-world settings,
where wear and non-wear time are not directly observed. The resulting insights and tools will also be highly
applicable to the processing and analysis of other types of intensively sampled serial data, such as those
generated from mobile digital devices.
项目总结
我们提出了新的统计和机器学习方法来处理和分析加速度计数据
用于研究体力活动、久坐行为和睡眠及其对结果的影响,例如
心血管健康。准确估计和表征久坐的体力活动的方法
行为和睡眠是至关重要的。加速度计已被广泛采用为标准
对自由生活的人类活动的客观测量。最近的进步催生了一些工具,
收集的海量数据远远超过了研究界有意义地
解读它们。目前的研究依赖于过时的方法来识别非磨损和寻址丢失的数据,
潜在地产生对行为活动之间关系的有偏见和低效的估计
模式和结果。重要的是,区分非磨损时期和非磨损时期的方法
代表久坐的行为或睡眠尚未在自由生活环境中使用黄金标准进行验证。
使用统计上有效的方法来处理非磨损周期,该方法利用了多变量和时间-
数据的系列性还有待开发。因此,需要新的方法来弥补目前的差距。
我们建议开发和验证一个集成分类器来区分不磨损时间。我们将适应和
验证利用要处理的数据的多变量和时间序列性质的多种补偿方法
利用整个体力活动轮廓的分析中的无磨损时间。具体地说,我们将评估
在应用自适应时合并多个补偿以处理来自非磨损的缺失数据的方法
聚类算法,以识别不同的睡眠和活动模式,以便将它们与
广义线性混合效应模型框架。我们将创建开源的用户友好的软件,可以
被研究界采纳和加强。我们的方法集成了三个新的数据资源来
开发我们的方法-两个具有真实活动和非磨损的知识,第三个由独特的
加速度量学和心血管危险因素测量的四年纵向时间序列
世界背景。它提供了使用可穿戴设备生成的数据来开发和说明方法的机会
包括丢失数据的自然环境中的设备。这是第一项纳入缺失数据的研究
加速度计广义线性混合效应模型框架下的学习算法
学习。这些方法对于现实世界环境中的观察性和临床试验研究都是至关重要的,
其中磨损和非磨损时间不能直接观察到。由此产生的洞察力和工具也将高度
适用于其他类型密集采样的串行数据的处理和分析,如
由移动数字设备生成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANISHA DESAI其他文献
MANISHA DESAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANISHA DESAI', 18)}}的其他基金
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
- 批准号:
10684163 - 财政年份:2021
- 资助金额:
$ 33.15万 - 项目类别:
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
- 批准号:
10460329 - 财政年份:2021
- 资助金额:
$ 33.15万 - 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
- 批准号:
10548871 - 财政年份:2021
- 资助金额:
$ 33.15万 - 项目类别:
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
- 批准号:
10269333 - 财政年份:2021
- 资助金额:
$ 33.15万 - 项目类别:
2/1 Arrest Respiratory Failure due to Pneumonia (ARREST PNEUMONIA)
2/1 因肺炎导致呼吸衰竭(ARREST PNEUMONIA)
- 批准号:
10701727 - 财政年份:2019
- 资助金额:
$ 33.15万 - 项目类别:
2/1 Arrest Respiratory Failure due to Pneumonia (ARREST PNEUMONIA)
2/1 因肺炎导致呼吸衰竭(ARREST PNEUMONIA)
- 批准号:
10249960 - 财政年份:2019
- 资助金额:
$ 33.15万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.15万 - 项目类别:
Research Grant














{{item.name}}会员




